Документ подписан простой электронной подписью

Информация о владельце: ФИО: Куижева Саида Казбековна

Должность: Ректор
Дата подписания: 12.09. Федеральное государственное бюджетное образовательное учреждение высшего образования

Уникальный программный ключ:

71183e1134ef9cfa69b206d480271b3c1a975e6f

минобрнауки россии

«МАЙКОПСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ»

Факультет	аграрных технологий
Кафедра хим	иии и физико-химических методов исследования
	УТВЕРЖДАЮ Проректор по учебной работе Л.И. Задорожная « 20 г.
	РАБОЧАЯ ПРОГРАММА
по дисциплине	Б1.В.02 Химические реакторы
по направлению подготовки	18.03.01 Химическая технология
	мическая технология синтетических биологически активных ических препаратов и косметических средств
веществ, химико-фармацевти	ческих препаратов и косметических средств
квалификация (степень) выпускника	Бакалавр
форма обучения	Очная, заочная
год начала подготовки	2021

Рабочая программа составлена в соответствии с требованиями ФГОС ВО и учебного плана МГТУ по направлению подготовки бакалавров 18.03.01 Химическая технология

Составитель рабочей программы; доцент кафедры химии, физики и ФХМИ	/	
кандидат педагогических наук	(подпись)	<u>Сичко Н.О.</u> (Ф.И.О.)
Рабочая программа утверждена на заседании кафедры химии и физико-химических методов исследовани (наименование кафедры	я	
Заведующий кафедрой «»20г.	(подпись)	<u>Попова А.А.</u> (Ф.И.О.)
Одобрено научно-методической комиссией факультет (где осуществляется обучение)	~a «	»20_ Γ.
Председатель научно-методического совета специальности (где осуществляется обучение)	(подпись)	<u>Попова А.А.</u> (Ф.И.О.)
Декан факультета (где осуществляется обучение) «»20г.	(подпись)	_ <u>Шхапацев А.К.</u> (Ф.И.О.)
СОГЛАСОВАНО: Начальник УМУ «»20г.	(подпись)	<u>Чудесова Н.Н.</u> (Ф.И.О.)
Зав. выпускающей кафедрой по специальности	(подпись)	<u>Попова А.А.</u> (Ф.И.О.)

1. Цели и задачи освоения дисциплины

Целью освоения дисциплины являются изучение основных закономерностей химических процессов, протекающих в реакционных аппаратах, и основ теории химических реакторов, рассматриваются основные методы и приемы повышения эффективности их работы. Это одна из основных дисциплин базовой части цикла профессиональных дисциплин, поскольку без знания принципов работы химических реакторов невозможны сознательные и эффективные подходы к разработке и организации технологических процессов.

Задачи дисциплины: овладение основами теории химико-технологических процессов и конструкции современных химических реакторов; принципы расчета химико-технологических процессов; новые тенденции в области развития теории процессов и аппаратов; формирование профессионального выполнения экспериментальных исследований по процессам и аппаратам.

2. Место дисциплины в структуре ОП по направлению подготовки

Освоение дисциплины формирует у обучающихся компетенции, необходимые для подготовки бакалавра в соответствии с требованиями ФГОС ВО в области химических технологий. Дисциплина входит в перечень дисциплин вариативной части цикла ОП.

Она имеет предшествующие логические и содержательно-методические связи с предметами, изученными студентами в процессе освоения образовательной программы основного общего образования по предметам «Химия», «Физика и биофизика», «Математика», а также сопутствующие связи с дисциплиной базовой части профессионального цикла «Кинетика и катализ», «Гидравлика», «Химическая технология». Полученные знания имеют значения для освоения специальных технологических дисциплин.

3. Перечень планируемых результатов обучения по дисциплине «Химические реакторы», соотнесенных с планируемыми результатами освоения образовательной программы

Планируемыми результатами обучения по дисциплине, являются знания, умения, владения и/или опыт деятельности, характеризующие этапы/уровни формирования компетенций и обеспечивающие достижение планируемых результатов освоения образовательной программы в целом.

Дисциплина «Химические реакторы» направлена на формирование у студентов следующих компетенций:

- ОПК-1 способностью и готовностью использовать основные законы естественнонаучных дисциплин в профессиональной деятельности;
- **ПК-16** способностью планировать и проводить физические и химические эксперименты, проводить обработку их результатов и оценивать погрешности, выдвигать гипотезы и устанавливать границы их применения, применять методы математического анализа и моделирования, теоретического и экспериментального исследования;
- **ПК-19** готовностью использовать знания основных физических теорий для решения возникающих физических задач, самостоятельного приобретения физических знаний, для понимания принципов работы приборов и устройств, в том числе выходящих за пределы компетентности конкретного направления.

В результате студент должен:

знать:

- основные закономерности протекания химических процессов и характеристики равновесного состояния;
- начала термодинамики и основные уравнения химической термодинамики, уравнения формальной кинетики и кинетики сложных, цепных, гетерогенных реакций, основные теории гомогенного, гетерогенного и ферментативного катализа;
- основные уравнения движения жидкостей; основы теории теплопередачи, основы теории массопередачи в системах со свободной и неподвижной границей раздела фаз.

уметь:

- выполнять основные химические операции, определять термодинамические характеристики химических реакций и равновесные концентрации веществ;
- использовать основные химические законы, термодинамические справочные данные и количественные соотношения неорганической химии для решения профессиональных задач;
- прогнозировать влияние различных факторов на равновесие в химических реакциях;
- определять направленность процесса в заданных начальных условиях, прогнозировать влияние температуры на скорость процесса;
- определять характер движения жидкостей и газов, основные характеристики процессов тепло- и массопередачи.

владеть:

- навыками вычисления тепловых эффектов химических реакций при заданной температуре в условиях постоянства давления или объёма; констант равновесия химических реакций при заданной температуре;
- методами определения констант скоростей реакций различных порядков по результатам кинетического эксперимента.

4. Объем дисциплины и виды учебной работы. Общая трудоемкость дисциплины

4.1. Объем дисциплины и виды учебной работы по очной форме обучения Общая трудоемкость дисциплины составляет 3 зачетные единицы (108 часов).

D	Всего	C	еместры
Вид учебной работы	часов/з.е.	5	
Контактные часы (всего)	34,35/0,95	34,35/0,95	
В том числе:			
Лекции (Л)	17/0,47	17/0,47	
Практические занятия (ПЗ)	17/0,47	17/0,47	
Семинары (С)	-	-	
Лабораторные работы (ЛР)	-	-	
Контактная работа в период аттестации (КРАт)	0,35/0,01	0,35/0,01	
Самостоятельная работа под руководством			
преподавателя (СРП)			
Самостоятельная работа студентов (СРС) (всего)	38/1,06	38/1,06	
В том числе:			
Курсовой проект (работа)	-	-	
Расчетно-графические работы	-	-	
Реферат	10/0,28	10/0,28	-
Другие виды СРС (если предусматриваются,			
приводится перечень видов СРС)			
1. Учебно-исследовательская работа.	14/0,34	14/0,34	
2. Составление плана-конспекта.	14/0,34	14/0,34	
Контроль (всего)	35,65/0,99	35,65/0,99	
Форма промежуточной аттестации:	экзамен	экзамен	
экзамен	35,65/0,99	35,65/0,99	
Общая трудоемкость	108/3	108/3	

4.2. Объем дисциплины и виды учебной работы по заочной форме обучения Общая трудоемкость дисциплины составляет 3 зачетные единицы (108 часов).

Programa and and and	Всего	C	еместры
Вид учебной работы	часов/з.е.	5	
Контактные часы (всего)	4,35/0,12	4,35/0,12	
В том числе:			
Лекции (Л)	2/0,06	2/0,06	
Практические занятия (ПЗ)	2/0,06	2/0,06	
Семинары (С)	-	-	
Лабораторные работы (ЛР)			
Контактная работа в период аттестации (КРАт)	0,35/0,01	0,35/0,01	
Самостоятельная работа под руководством			
преподавателя (СРП)			
Самостоятельная работа студентов (СРС) (всего)	95/2,64	95/2,64	
В том числе:			
Курсовой проект (работа)	-	-	
Расчетно-графические работы	-	-	
Реферат	10/0,27	10/0,27	
Другие виды СРС (если предусматриваются,			
приводится перечень видов СРС)			l i
3. Учебно-исследовательская работа.	43/1,19	43/1,19	
4. Составление плана-конспекта.	42/1,17	42/1,17	
Всего (контроль)	8,65/0,24	8,65/0,24	
Форма промежуточной аттестации:	экзамен	экзамен	
экзамен	8,65/0,24	8,65/0,24	
Общая трудоемкость	108/3	108/3	

5. Структура и содержание дисциплины

5.1. Структура дисциплины для очной формы обучения

		Неде			-		и трудо	включ		Формы текущего контроля успеваемости
№ п/ п	Раздел дисциплины	ля семес тра	Ľ	С/ПЗ	КРАТ	JIP	CPII	Контроль	C	(по неделям семестра) Форма промежуточной аттестации (по семестрам)
				5	семес	тр				
1.	Общие закономерности химических процессов, протекающих в химических реакторах.	1-2	2	2				a n n	1	Тестирование
2.	Химические реакторы с идеальной структурой потока в изотермическом режиме	3-4	2	3						Блиц-епрос. Защита лабораторной работы Блиц-опрос.
3.	Химические реакторы с неидеальной структурой потоков	5-6	2	2						Блиц-опрос. Защита лабораторной работы
4.	Распределение времени пребывания в проточных реакторах	7-8	2	2						Модуль
5.	Теплоперенос в химических реакторах	9-10	2	2					1	Тестирование. Блиц-опрос.
6.	Промышленные химические реакторы	11-12	3	2						Блиц-опрос. Защита лабораторной работы
7.	Понятие тепловой устойчивости работы химического реактора	13-14	2	2						Модуль
8.	Реальные химические реакторы	15	2	2						Блиц-опрос. Защита лабораторной работы
9	Промежуточная аттестация: экзамен ИТОГО: 108	17	17	17	0,35 0,35			35,65 35,65	38	экзамен в устной форме

5.2. Структура дисциплины для заочной формы обучения

№		Неделя	Виды учебной работы, включая самостоятельную и трудоемкость (в часах)							
п/п	Раздел дисциплины	семестра	I.C	AIC.	СЛІЗ	KPAT	CPII	Контро	CP	
		5 семест	p							
1.	Общие закономерности химических процессов, протекающих в химических реакторах.	1-2	1	2					15	
2.	Химические реакторы с идеальной структурой потока в изотермическом режиме	3-4	1	2					15	
3.	Химические реакторы с неидеальной структурой потоков	5-6	1	1					15	
4.	Распределение времени пребывания в проточных реакторах	7-8	1	1					15	
5.	Теплоперенос в химических реакторах	9-10	1	2					10	
6.	Промышленные химические реакторы	11-12	1	1					10	
7.	Понятие тепловой устойчивости работы химического реактора	13-14	1	2					10	
8.	Реальные химические реакторы	15-16	1	1					5	
9.	Промежуточная аттестация: экзамен	17-18				0,35		8,65		
	ИТОГО: 108		2	2		0,35		8,65	95	

5.3. Содержание разделов дисциплины «Химические реакторы», образовательные технологии

Лекционный курс

№ п/п	Наименование темы дисциплины		Трудое! (часы/ зач. ед.)		Содержание	Формир уемые компете нции	Результаты освоения (знать, уметь, владеть)	Образователь ные технологии
		ОФО	3ФО					
Тема 1.	Общие сведения о химических реакторах	2/0,06		Моделирование химических реакторов и протекающих в них химических процессов. Структура математической модели химического реактора. Уравнение материального баланса для элементарного объема проточного химического реактора. Классификация химических реакторов и режимов их работы	ОПК-1 ПК-16 ПК-19	Знать: структуру математической модели химического реактора; уравнение материального баланса для элементарного объема проточного химического реактора. Уметь: применять полученные знания для вычисления производных функций, для построения графиков функций. Владеть: навыками решения прикладных задач.	Традиционная лекция	
Тема 2.	Химические реакторы с идеальной структурой потока в изотермическом режиме	2/0,06	1/0,03	Реактор идеального смешения. Реактор идеального вытеснения. Сравнение эффективности проточных реакторов идеального смешения и идеального	ОПК-1 ПК-16 ПК-19	Знать: способы расчета каскадов реакторов Уметь: применять полученные знания для решения задач, организовать свою	Традиционная лекция	

			вытеснения. Каскад реакторов идеального смешения		самостоятельную работу по изучению основной и дополнительной литературы. Владеть: навыками использования обеспечения ПК для анализа экспериментальных данных и оптимизации работы реактора	
Тема 3.	Химические реакторы с неидеальной структурой потоков	2/0,06	Причины отклонений от идеальности в проточных реакторах. Модели реакторов с неидеальной структурой потоков	ОПК-1 ПК-16 ПК-19	Знать: виды балансных, кинетических и вспомогательных уравнений для описания работы химических реакторов. Уметь: составлять и решать системы уравнений для разработки математической модели химического реактора. Владеть: навыками сбора и анализа информации	Традиционная лекция
Тема 4.	Распределение времени пребывания в проточных реакторах	2/0,06	Функция распределения времени пребывания. Экспериментальное изучение функции распределения времени пребывания идеальных и неидеальных проточных реакторов. Применение функций распределения времени пребывания при расчете	ОПК-1 ПК-16 ПК-19	Знать: функции распределения времени пребывания идеальных и неидеальных проточных реакторов. Уметь: проводить математический анализ экспериментальных данных с целью определения параметров для математического моделирования химических	Традиционная лекция

				химических реакторов		реакторов. Владеть: навыками решения прикладных задач.	
Тема 5.	Теплоперенос в химических реакторах	2/0,06		Уравнение теплового баланса. Тепловые режимы химических реакторов. Проточный реактор идеального смешения в изотермическом режиме. Периодический реактор идеального смешения в неизотермическом режиме. Реактор идеального вытеснения в неизотермическом режиме Тепловая устойчивость химических реакторов. Оптимальный температурный режим и способы его осуществления в промышленных реакторах	ОПК-1 ПК-16 ПК-19	Знать: уравнение теплового баланса; тепловые режимы химических реакторов Уметь: применять полученные знания при решении задач. Владеть: методами практического исследования промышленных химических реакторов.	Традиционная лекция
Тема 6.	Промышленные химические реакторы	2/0,06	1/0,03	Реакторы для гомогенных процессов. Реакторы для гетерогенных процессов с твердой фазой. Реакторы для газожидкостных процессов. Реакторы для гетерогенных каталитических процессов	ОПК-1 ПК-16 ПК-19	Знать: реакторы для гомогенных процессов; реакторы для гетерогенных процессов с твердой фазой; реакторы для газожидкостных процессов. Уметь: проводить исследования на модели химического реактора с целью оптимизации Владеть: навыками решения прикладных задач.	Традиционная лекция

Тема 7.	Понятие тепловой устойчивости работы химического реактора	2/0,06		Способы повышения степени превращения реагентов в случае проведения реакции в адиабатическом РИС-н. Способы поддержания оптимального температурного режима в случае протекания обратимой экзотермической реакции.	ОПК-1 ПК-16 ПК-19	Знать: способы повышения степени превращения реагентов в случае проведения реакции в адиабатическом РИС-н. Уметь: проводить математический анализ экспериментальных данных с целью определения параметров для математического моделирования химических реакторов. Владеть: навыками использования обеспечения ПК для анализа экспериментальных данных и оптимизации работы реактора	Традиционная лекция
Тема 8.	Реальные химические реакторы	2/0,06		Причины отклонения от идеальности. Модели реальных реакторов. Функции распределения времени пребывания в проточных реакторах.	ОПК-1 ПК-16 ПК-19	Знать: причины отклонения от идеальности; модели реальных реакторов; функции пребывания в проточных реакторах Уметь: проводить исследования на модели химического реактора с целью оптимизации Владеть: навыками решения прикладных задач	Традиционная лекция
	Итого	17/0,47	2/0,06			:	

5.4. Практические и семинарские занятия, их наименование, содержание и объем в часах

№ п/п	№ раздела дисциплины	Наименование семинарских занятий	Объем в часах трудоемкость з.е.	
		ОФО	3ФО	
1	Общие сведения о химических реакторах	Технологические критерии оценки эффективности процессов, протекающих в химических реакторах.	2/0,06	
2		Определение лимитирующей стадии процесса восстановления диоксида углерода углем.	2/0,06	1/0,03
3	Химические реакторы с неидеальной структурой потоков	Определение лимитирующей стадии гетерогенного процесса обжига сульфида цинка	2/0,06	
4	Распределение времени пребывания в проточных реакторах	Сравнение эффективности работы	2/0,06	
5	-	Сравнение эффективности работы проточных реакторов, описываемых различными моделями (РИС-Н, РИВ, КРИС-Н), в изотермическом режиме по селективности процесса получения целевого продукта (по выходу продукта).	2/0,06	
6	Промышленные химические реакторы	Расчет скорости стадии сложной химической реакции.	2/0,06	1/0,03
7	Понятие тепловой устойчивости работы химического реактора	Оценка тепловой устойчивости химического реактора.	2/0,06	
8	Реальные химические реакторы	Вычисление критерия Пекле химического реактора	3/0,08	
	Итого		17/0,47	2/0,06

5.5. Лабораторные занятия, их наименование и объем в часах

No	№ раздела	Наименование	Объем в	часах /
п/п	дисциплины	лабораторных работ	трудоемко	сть в з.е.
			ОФО	3ФО

5.6. Примерная тематика курсовых проектов (работ)

Курсовой проект (работа) учебным планом не предусмотрены.

5.7. Самостоятельная работа студентов

Содержание и объем самостоятельной работы студентов

No	Разделы и темы рабочей программы	Перечень домашних заданий и других вопросов для	Сроки выполнени	Объем в часах/трудое мкость в з.е.	
n/n	самостоятельного изучения	самостоятельного изучения	Я	ОФО	3ФО
1.	Общие сведения о химических реакторах	Вопросы на самостоятельное изучение, составление планконспекта: понятие оптимальных температур для обратимых и необратимых химических процессов. Оборудование для проведения гомогенных процессов.	2-4 неделя	3/0,08	10/0,2
2.	Химические реакторы с идеальной структурой потока в изотермическом режиме	протекания процесса на	4-6 неделя	3/0,08	10/0,2
3.		Типы реакторов для проведения процессов в системе «газтвердое тело».	6-7 неделя	3/0,08	10/0,2
4.		Пути интенсификации гетерогенно-каталитических процессов. Основные технологические показатели и требования, предьявляемые к промышленным катализаторам. Состав и способы изготовления контактных масс.	8-9 неделя	3/0,08	10/0,2
5.	Теплоперенос в химических реакторах	Материальный баланс реакторов в зависимости от стационарности процесса и гидродинамики потока: реактора идеального смешения	10-11 неделя	3/0,08	10/0,2

		непрерывного действия, реактора идеального смешения периодического действия и реактора идеального вытеснения.			
6.	Промышленные химические реакторы	Учет изменения объема реакционной массы при расчете реакторов. Сравнение эффективности работы реакторов, описываемых различными моделями.	12-13 неделя	3/0,08	10/0,2
7.	Понятие тепловой устойчивости работы химического реактора	Способы поддержания оптимального температурного режима в случае протекания обратимой экзотермической реакции.	14-15 неделя	3/0,08	10/0,2
8.	Реальные химические реакторы	Функции распределения времени пребывания в проточных реакторах.	В течение семестра	3/0,08	5/0,14
9	По всем разделам курса	Написание <i>реферата</i> на одну из тем, предложенную преподавателем.	В течение семестра	10/0,2 7	10/0,2 7
10	Химические реакторы с неидеальной структурой потоков	УИРС. Составление системы дифференциальных уравнений для индивидуальной системы химических реакций.	В течение семестра	4/0,11	5/0,14
11	Теплоперенос в химических реакторах	УИРС. Подбор кинетических параметров индивидуального реактора по модельной функции отклика.		4/0,11	5/0,14
	Итого:			38	95

- 6. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)
 - 6.1. Методические указания (собственные разработки)

6.2. Литература для самостоятельной работы

- 1. Кутепов, А.М. Общая химическая технология: учебник для студентов вузов / А.М. Кутепов, Т.И. Бондарева, М.Г. Беренгартен. М.: Академкнига, 2005. 528 с.
- 2. Ефремов, Г.И. Моделирование химико-технологических процессов [Электронный ресурс]: учебник / Г.И. Ефремов. М.: ИНФРА-М, 2016. 255 с. ЭБС «Znanium. com» Режим доступа: http://znanium.com/catalog.php?bookinfo=510221
- 3. **Закгейм А. Ю. Общая химическая технология: введение в моделирование химикотехнологических процессов [Электронный ресурс]: учебное пособие / А. Ю. Закгейм. -М.: Логос, 2012. - 304 с. - ЭБС «Znanium.com» - Режим доступа: http://znanium.com/catalog.php?bookinfo=468690
- 4. Поникаров, И.И. Машины и аппараты химических производств и нефтегазопереработки: учебник / И.И. Поникаров, М.Г. Гайнуллин. СПб.: Лань, 2018. 604 с.
- 5. Сибаров, Д.А. Катализ, каталитические процессы и реакторы: учебное пособие / Д.А. Сибаров, Д.А. Смирнова. СПб.: Лань, 2018. 200 с.
- 6. Ефремов, Г.И. Моделирование химико-технологических процессов [Электронный ресурс]: учебник / Г.И. Ефремов. М.: ИНФРА-М, 2019. 255 с. ЭБС «Znanium. com» Режим доступа: http://znanium.com/catalog/product/989195

7.Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю)

7.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы

Этапы формирования компетенции (номер семестра согласно учебному плану)	Наименование учебных дисциплин, формирующих компетенции в процессе освоения образовательной программы
	обностью и готовностью использовать основные законы
естественн	онаучных дисциплин в профессиональной деятельности
1,2,3,4	Математика
1,2,3,4	Физика
1,2	Общая и неорганическая химия
3,4	Аналитическая химия и физико-химические методы анализа
5,6	Физическая химия
3,4	Органическая химия
6	Коллоидная химия
7	Электрохимия
3	Экология
5	Общая химическая технология
5	Химическая метрология и стандартизация
	COT BACORAHO

СОГЛАСОВАНО
С БИБЛИОТЕКОЙ МГТУ

/САМУСОВА Е.Е

7	Химия и физика твердого тела
6	Процессы и аппараты химической технологии
5	Химические реакторы
7	Кинетика и катализ
7	Коррозия и защита металлов
7	Проектирование процессов и аппаратов химической технологии
6	Основы проектирования и оборудование предприятий химико- фармацевтических и косметических производств
6	Технологии ресурсосбережения в производствах синтетических биологически активных веществ, химико-фармацевтических препаратов и косметических средств
8	Технология синтетических биологически-активных веществ, химико-фармацевтических препаратов и косметических средств
8	Химия высокомолекулярных соединений
5	Гидравлика
5	Основы проектирования и оборудование производств биологически активных веществ
3	Профессионально-ориентированный иностранный язык
3	Деловой иностранный язык
7	Фармакопейный анализ групп химико-фармацевтических препаратов
7	Основы химической фармакологии
5	Химия и физика полимеров
5	Стандартизация лекарственных средств
6	Технология готовых лекарственных форм
6	Технология биологически активных веществ, иммобилизованных на полимерных носителях
2	Инноватика
2	Управление персоналом
2	Практика по получению первичных профессиональных умений и навыков, в том числе первичных умений и навыков научно- исследовательской деятельности
6	Научно-исследовательская работа
8	Преддипломная практика для выполнения выпускной квалификационной работы
8	Подготовка к процедуре защиты и процедура защиты выпускной квалификационной работы

ПК-16: способностью планировать и проводить физические и химические эксперименты, проводить обработку их результатов и оценивать погрешности, выдвигать гипотезы и устанавливать границы их применения, применять методы математического анализа и моделирования, теоретического и экспериментального исследования

1,2,3,4	Общая и неорганическая химия
1,2	Аналитическая химия и физико-химические методы анализа
3,4	Физическая химия
5,6	Органическая химия
6	Электрохимия
7	Химия и физика твердого тела
4	Экономика
4	Химия окружающей среды
6	Процессы и аппараты химической технологии

5	Химические реакторы
7	Кинетика и катализ
7	Коррозия и защита металлов
8	Моделирование химико-технологических процессов
3	Теоретическая и прикладная механика
7	Системы управления химико-технологическими процессами
7	Проектирование процессов и аппаратов химической технологии
6	Основы проектирования и оборудование предприятий химико-
	фармацевтических и косметических производств
6	Технологии ресурсосбережения в производствах синтетических
	биологически активных веществ, химико-фармацевтических
	препаратов и косметических средств
8	Химия высокомолекулярных соединений
3	Физические методы исследования в химии
1	Инженерная графика
5	Гидравлика
5	Основы проектирования и оборудование производств
	биологически активных веществ
8	Химия гетероциклов и основы молекулярной биологии
8	Химия и технология макроциклических соединений
1	Защита интеллектуальной собственности
1	Основы научных исследований и инженерного творчества
7	Статистическая физика
7	Строение молекул
5	Химия и физика полимеров
5	Стандартизация лекарственных средств
2	Инноватика
2	Управление персоналом
4	Информационные технологии в научно-производственной сфере
4	Новые IT-технологии
2	Практика по получению первичных профессиональных умений и
	навыков, в том числе первичных умений и навыков научно-
	исследовательской деятельности
6	Научно-исследовательская работа
8	Преддипломная практика для выполнения выпускной
	квалификационной работы
8	Подготовка к процедуре защиты и процедура защиты выпускной
	квалификационной работы
ПК-19: готовност	тью использовать знания основных физических теорий для решения
	ических задач, самостоятельного приобретения физических знаний
для понимания п	ринципов работы приборов и устройств, в том числе выходящих за
n	ределы компетентности конкретного направления
5,6	Физическая химия
7	Электрохимия
7	Химия и физика твердого тела
4	Химия окружающей среды
4	Химия окружающей среды
6	Процессы и аппараты химической технологии
	Химические реакторы
5	рамические реакторы
7	Системы управления химико-технологическими процессами

5	Стандартизация лекарственных средств
6	Научно-исследовательская работа
8	Преддипломная практика для выполнения выпускной
	квалификационной работы
8	Подготовка к процедуре защиты и процедура защиты выпускной
	квалификационной работы

7.2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкалы оценивания

Планируемые результаты освоения компетенции		Наименование оценочного			
	неудовлетвори- тельно	удовлетворительно	хорошо	отлично	средства
ОПК-1: способностью и готовностью	использовать осно	вные законы естестве	ннонаучных дисцип	л <mark>ин в професси</mark> ональн	ой деятельности
знать: содержание процессов самоорганизации и самообразования, их особенностей и технологий реализации, исходя из целей совершенствования профессиональной деятельности;	Фрагментарные знания	Неполные знания	Сформированные, но содержащие отдельные пробелы знания	Сформированные матические знания	тесты, рефераты, экзамен.
уметь: планировать цели и устанавливать приоритеты при выборе способов принятия решений с учетом условий, средств, личностных возможностей и временной перспективы достижения; самостоятельно строить процесс овладения информацией, отобранной и структурированной для выполнения задач профессиональной деятельности;		Неполные умения	Умения полные, допускаются небольшие ошибки	Сформированные умения	
владеть: приемами саморегуляции	Частичное владение навыками	Несистематическое применение навыков	В систематическом применении навыков допускаются пробелы	Успешное и систематическое применение навыков	

организации, самоконтроля и					
самооценки деятельности.					
ПК-16: способностью планировать и	проводить физичес	Кие и химические экс	перименты, проводи	<mark>іть обработку их рез</mark> у	льтатов и
оценивать погрешности, выдвигать					
анализа и моделирования, теоретич	ческого и экспериме	нтального исследован	ия		_
Знать: сущность химических методов	Фрагментарные	Неполные знания	Сформированные,	Сформированные	Тесты, рефераты
анализа; основные законы и теории,	знания		но содержащие	матические знания	экзамен.
применяемые в аналитической химии;			отдельные пробелы		
физические основы измерений;			знания		
навыками проведения количественного					
анализа в водных растворах; навыками					
планирования физических и					
кимических экспериментов.			<u> </u>	<u> </u>	
Уметь: проводить физические и	Частичные умения	Неполные умения	Умения полные,	Сформированные	
кимические эксперименты; проводить			допускаются	умения	
обработку их результатов и оценивать			небольшие ошибки		
погрешности; выдвигать гипотезы и					
станавливать границы их применения;					
применять методы математического					
анализа и моделирования; применять					
методы теоретического и					
экспериментального исследования;					
нализировать простые вещества и					
исследовать химические процессы с					
использованием стандартных методик.					
Владеть: навыками проведения	Частичное владение	Несистематическое	В систематическом	Успешное и	
количественного анализа в водных	навыками	применение навыков	применении	систематическое	
растворах; навыками планирования			навыков	применение навыков	
ризических и химических			допускаются		
кспериментов.			пробелы		

ПК-19: готовностью использовать знания основных физических теорий для решения возникающих физических задач, самостоятельного приобретения физических знаний, для понимания принципов работы приборов и устройств, в том числе выходящих за пределы компетентности конкретного направления

Знать: Принципы построения систем	Фрагментарные	Неполные знания	Сформированные,	Сформированные	
контроля и управления химико-	знания		но содержащие	матические знания	Тесты, рефераты,
технологическими процессами.			отдельные пробелы		экзамен.
			знания		
Уметь: самостоятельно приобретать	Частичные умения	Неполные умения	Умения полные,	Сформированные	
физические знания, необходимые для			допускаются	умения	
понимания принципов работы новых и			небольшие ошибки		
проектируемых приборов и устройств.					
Владеть: основными физическими	Частичное владение	Несистематическое	В систематическом	Успешное и	
теориями, применяющимися для	навыками	применение навыков	применении	систематическое	
решения возникающих физических			навыков	применение навыков	
задач.			допускаются		
			пробелы		

7.3. Типовые контрольные задания и иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы Примерный перечень оценочных средств, их краткая характеристика и шкала оценивания

Наименование оценочного средства	Краткая характеристика оценочного средства	Представление оценочного средства в фонде	Шкала оценивания
Текущий контроль усп	еваемости		
Тест	Система стандартизированных заданий, позволяющая автоматизировать процедуру измерения уровня знаний и умений обучающегося. В тестовых заданиях используются четыре типа вопросов: • закрытая форма - наиболее распространенная форма и предлагает несколько альтернативных ответов на поставленный вопрос. Например, обучающемуся задается вопрос, требующий альтернативного ответа «да» или «нет», «является» или «не является», «относится» или «не относится» и т.п. Тестовое задание, содержащее вопрос в закрытой форме, включает в себя один или несколько правильных ответов и иногда называется выборочным заданием. Закрытая форма вопросов используется также в тестахзадачах с выборочными ответами. В тестовом задании в этом случае сформулированы условие задачи и все необходимые исходные данные, а в ответах представлены несколько вариантов результата решения в числовом или буквенном виде. Обучающийся должен решить задачу и показать, какой из представленных ответов он получил; • открытая форма - вопрос в открытой форме представляет собой утверждение, которое необходимо дополнить. Данная форма может быть представлена в тестовом задании, например, в виде словесного текста, формулы (уравнения), графика, в которых пропущены существенные составляющие - части слова или буквы, условные обозначения, линии или изображения элементов схемы и графика.	Фонд тестовых заданий	Четырёхбальная шкала

Реферат	Обучающийся должен по памяти вставить соответствующие элементы в указанные места («пропуски»); • установление соответствия - в данном случае обучающемуся предлагают два списка, между элементами которых следует установить соответствие; • установление последовательности - предполагает необходимость установить правильную последовательность предлагаемого списка слов или фраз. Продукт самостоятельной работы обучающегося, представляющий собой краткое изложение содержания и результатов индивидуальной учебноисследовательской деятельности. Автор раскрывает суть исследуемой проблемы, приводит различные точки зрения, а также собственные взгляды на её. Реферат должен быть структурирован (по главам, разделам, параграфам) и включать разделы: введение, основную часть, заключение, список использованной литературы. В зависимости от тематики реферата к нему могут быть оформлены приложения, содержащие документы, иллюстрации,	Темы рефератов	Двухбальная шкала
Экзамен	таблицы, схемы и т.д. Экзамен по дисциплине (модулю) служит для оценки работы обучающегося	Roppost k araswawy	Четырёхбальная
O ROGENION	в течение семестра (семестров) и призван выявить уровень, прочность и систематичность полученных им теоретических и практических знаний, приобретения навыков самостоятельной работы, развития творческого мышления, умение синтезировать полученные знания и применять их в решении профессиональных задач.	Вопросы к экзамену	шкала

Контрольные вопросы и задания для проведения текущего контроля

г) к сырью.

г) к сырью

a) $X_A = \frac{N_A}{N_{Ao}}$; 6) $X_A = \frac{N_{Ao} - N_A}{N_{Ao}}$; b) $X_A = \frac{N_{Ao}}{N_{Ao} - N_A}$; r) $X_A = \frac{N_{Ao}}{N_A}$;

 $\mathbf{a})\,\eta_{R} = \frac{N_{R\,\mathrm{max}} - N_{R}}{N_{R\,\mathrm{max}}}\,; \quad \mathbf{6})\,\eta_{R} = \frac{N_{R\,\mathrm{max}}}{N_{R\,\mathrm{max}} - N_{R}}\,; \qquad \mathbf{b})\,\eta_{R} = \frac{N_{R}}{N_{R\,\mathrm{max}}}\,; \qquad \mathbf{r})\,\eta_{R} = \frac{N_{R\,\mathrm{max}}}{N_{R}}\,;$

б) к отходам производства;

б) к отходам производства;

б) выход продукта А;

б) выход продукта R;

1.К каким веществам относится понятие степень превращения?

4. Степень превращения реагента рассчитывается по уравнению:

2.К каким веществам относится понятие степень конверсии?

3. Что обозначает технологический показатель X_A :

в) количество прореагировавшего вещества А;

5. Выход продукта рассчитывается по уравнению:

6. Что обозначает технологический показатель ф к:

г) селективность переработки реагента А в продукт R.

7. Что означает понятие «дифференциальная селективность»?

а) количество полученного продукта R;

в) долю прореагировавшего сырья;

а) неизвестное количество вещества А;

г)степень превращения реагента А

а) к полупродуктам;

а) к полупродуктам;

в) к концентрату;

в) к концентрату;

а) долю от перераоотанного сырья, пошедшего на получение целевого продукта при
проведении сложных реакций;
б) Отношение скоростей прямой и обратной реакций при проведении простой обратимой
реакции;
в) Отношение скорости переработки реагента А по одной из реакций к общей скорости
его переработки по всем одновременно идущим реакциям;
г) Отношение скорости переработки реагента А к скорости образования целевого
продукта.
8. Что в технологических критериях эффективности XTC характеризует понятие
интегральная селективность?
а) Долю переработанного сырья при проведении простой необратимой реакции;
б) Долю переработанного сырья при проведении простой обратимой реакции;
в) Суммарную долю переработанного сырья при проведении сложных параллельных
реакций;
г) Долю от переработанного сырья, пошедшего на получение целевого продукта при
проведении сложных реакций;
9.Интегральная селективность процесса рассчитывается по уравнению:
a) $\varphi_R = \frac{\Delta N_{A \to R}}{\Delta N_A}$; 6) $\varphi_R = \frac{N_A}{\Delta N_A}$; b) $\varphi_R = \frac{\Delta N_A}{N_{A\phi}}$; r) $\varphi_R = \frac{\Delta N_A}{\Delta N_{A \to E}}$;
10.Какое уравнение описывает связь между технологическими критериями для
необратимых сложных реакций?
$x = X_A$ $x = X_A$
a) $\eta_R = \frac{X_A}{X_{AB}}$; 6) $\eta_R = X_A$; b) $\eta_R = \varphi_R X_A$; r) $\eta_R = \varphi_R \frac{X_A}{X_{AB}}$;
11.Какое уравнение описывает связь между технологическими критериями для обратимых сложных реакций?
VIIVANDIA DVARUNNI

a)
$$\eta_R = \frac{X_A}{X_{Ap}}$$
; 6) $\eta_R = X_A$; b) $\eta_R = \varphi_R X_A$; r) $\eta_R = \varphi_R \frac{X_A}{X_{Ap}}$;

12. Какое уравнение описывает связь между технологическими критериями для необратимых простых реакций?

a)
$$\eta_R = \frac{X_A}{X_{Ap}};$$
 6) $\eta_R = X_A;$ B) $\eta_R = \varphi_R X_A;$ Γ $\eta_R = \varphi_R \frac{X_A}{X_{Ap}};$

13. Какое уравнение описывает связь между технологическими критериями для обратимых простых реакций?

a)
$$\eta_R = \frac{X_A}{X_{Ap}};$$
 6) $\eta_R = X_A;$ B) $\eta_R = \varphi_R X_A;$ r) $\eta_R = \varphi_R \frac{X_A}{X_{Ap}};$

14. Математическое выражение скорости гомогенного процесса имеет вид:

a)
$$W_{J} = \pm \frac{dN_{J}}{d\tau} \frac{1}{S} \frac{1}{j}$$

b) $W_{J} = \pm \frac{dC_{J}}{d\tau} \frac{1}{S} \frac{1}{j}$
6) $W_{J} = \pm \frac{dN_{J}}{d\tau} \frac{1}{V} \frac{1}{j}$
c) $W_{J} = \pm \frac{dC_{J}}{d\tau} \frac{1}{V} \frac{1}{j}$

15. Уравнение скорости реакции второго порядка типа $2A_{\Gamma} \to \mathcal{I}_{\Gamma} + C_{\Gamma}$ имеет вид:

a)
$$W_A = kC_A C_B$$
 6) $W_A = k_o e^{-E/RT} C_{Ao} (1 - X_A)$
B) $W_A = k_o e^{-E/RT} C_{Ao} (1 - X_A) (C_{Bo} - C_{Ao} X_A)$
F) $W_A = k \frac{C_{Ao} (1 - X_A)}{(1 + \varepsilon_A X_A)}$
D) $W_A = k_o e^{-E/RT} \frac{C_{Ao}^2 (1 - X_A)^2}{(1 + \varepsilon_A X_A)^2}$

e)
$$W_A = k_o e^{-B/RT} C_{Ao} (1 - X_A) C_{Bo} - C_{Ao} X_A$$

16. Уравнение скорости реакции первого порядка типа $A_{\Gamma} \! \to \! \not\!\! \perp_{\Gamma} \!\!\! + C_{\Gamma} \!\!\! -$ имеет вид:

a)
$$W_A = kC_A C_B$$

6) $W_A = k_o e^{-E/RT} C_{Ao} (1 - X_A)$

B) $W_A = k_o e^{-E/RT} C_{Ao} (1 - X_A) (C_{Bo} - C_{Ao} X_A)$

F) $W_A = k_o e^{-E/RT} \frac{C_{Ao} (1 - X_A)}{(1 + \varepsilon_A X_A)}$

D) $W_A = k_o e^{-E/RT} \frac{C_{Ao} (1 - X_A)^2}{(1 + \varepsilon_A X_A)^2}$

e)
$$W_A = k_o e^{-E_{RT}} C_{Ao} (1 - X_A) C_{Bo} - C_{Ao} X_A$$

17. Уравнение скорости реакции второго порядка типа $A_r + B_r \to \mathcal{I}_{\!\! I^r}$ имеет вид:

a)
$$W_A = k_1 C_A C_R - k_2 C_R$$

6)
$$W_A = k_{1o}e^{-E/RT}C_{Ao}(1-X_A)(C_{Bo}-C_{Ao}X_A)-k_{2o}C_R$$

B)
$$W_A = k_1 \frac{C_{Ao}(1 - X_A)(C_{Bo} - C_{Ao}X_A)}{(1 + \varepsilon_A X_A)^2} - k_2 \frac{C_{Ao}X_A}{1 + \varepsilon_A X_A}$$

18. Уравнение скорости реакции первого порядка типа $A_{\mathbb{X}} \to \mathcal{A}_{\mathbb{X}} + C_{\mathbb{X}}$ имеет вид:

a)
$$W_A = kC_A C_B$$
 6) $W_A = k_o e^{-E/RT} C_{Ao} (1 - X_A)$

B)
$$W_A = k_o e^{-E/RT} C_{Ao} (1 - X_A) (C_{Bo} - C_{Ao} X_A)$$

$$\text{r)} \quad W_{\scriptscriptstyle A} = k \quad \frac{C_{\scriptscriptstyle Ao}(1-X_{\scriptscriptstyle A})}{(1+\varepsilon_{\scriptscriptstyle A}X_{\scriptscriptstyle A})} \qquad \qquad \text{d}) W_{\scriptscriptstyle A} = k_{\scriptscriptstyle 0} e^{-E_{\scriptscriptstyle /\!RT}'} \frac{C_{\scriptscriptstyle Ao}(1-X_{\scriptscriptstyle A})^2}{(1+\varepsilon_{\scriptscriptstyle A}X_{\scriptscriptstyle A})^2}$$

e)
$$W_A = k_o e^{-E/RT} C_{Ao}^{2} (1 - X_A)^2$$

19. Уравнение скорости реакции второго порядка типа $2A_{\mathbb{X}} \to \mathcal{I}_{\mathbb{X}} + C_{\mathbb{X}}$ имеет вид:

a)
$$W_A = kC_A C_B$$
 6) $W_A = k_o e^{-E/RT} C_{Ao} (1 - X_A)$

B)
$$W_A = k_o e^{-E/RT} C_{Ao} (1 - X_A) (C_{Bo} - C_{Ao} X_A)$$

$$\text{p)} \ \, W_{A} = k \ \, \frac{C_{Ao}(1 - X_{A})}{(1 + \varepsilon_{A}X_{A})} \qquad \qquad \text{p)} W_{A} = k_{o}e^{-E/RT} \frac{C_{Ao}(1 - X_{A})^{2}}{(1 + \varepsilon_{A}X_{A})^{2}}$$

e)
$$W_A = k_o e^{-E/RT} C_{Ao}^{2} (1 - X_A)^2$$

20. Уравнение скорости реакции типа $A_{w}+B_{w}+$ Кат $(w) \rightarrow R_{w}$ имеет вид:

a)
$$W_A = k_1 C_A C_B - k_2 C_R$$

6)
$$W_A = k_{1o}e^{-E/RT}C_{Ao}(1-X_A)(C_{Bo}-C_{Ao}X_A)-k_{2o}C_R$$

B)
$$W_A = k_o e^{-E/RT} C_{Ao} (1 - X_A) (C_{Bo} - C_{Ao} X_A)$$

$$W_A = k_o e^{-E/RT} C_{Ao} (1 - X_A) (C_{Bo} - C_{Ao} X_A) C_{\kappa am}$$

- 21. Скорость гомогенного процесса, протекающего в жидкой фазе, можно увеличить, если:
- а) уменьшить температуру, б) увеличить давление, в) уменьшить давление, г) увеличить температуру.
- 22. Уравнение изобары Вант-Гоффа имеет вид:

a)
$$\frac{d \ln X_{Aaas}}{dT} = \frac{Q}{RT^2}$$
 6) $\frac{d \ln K_p}{dT} = \frac{\Delta H}{RT}$;

23. Уравнение показывающее влияние давления на константу равновесия имеет вид:

a)
$$\frac{d \ln X_{Aaaa}}{dT} = \frac{Q}{RT^2}$$
 6)
$$\frac{d \ln K_p}{dP} = \frac{\Delta H}{RT}$$
;

B)
$$\frac{d \ln K_p}{dP} = -\frac{\Delta v}{RT}$$
 F) $\frac{d \ln K_p}{dT} = \frac{\Delta H}{RT^2}$ B) $\Delta G = -RT \ln K_p$

- 24. Уравнение изобары Вант-Гоффа дает зависимость между:
- а) P и T; б) $X_{A \, pabh}$ и P; в) ΔH и T; г) K_P и T; д) ΔG и K_P

Контрольные вопросы и задания для проведения промежуточной аттестации Примерный перечень вопросов к зачету по дисциплине «Химические реакторы»

- 1. Технологические критерии оценки эффективности протекания процесса в химическом реакторе: степень превращения реагента, выход продукта, связь между ними.
- 2. Технологические критерии оценки эффективности процесса, протекающего в химическом реакторе: селективность процесса получения продукта, расходные коэффициенты по сырью. Связь селективности со степенью превращения и выходом продукта.
- 3. Уровень химического процесса и уровень химического реактора в иерархической структуре химического производства.
- 4. Общая характеристика гомогенных процессов. Аппаратурное оформление гомогенных некаталитических процессов.
- 5. Гомогенные некаталитические процессы: термодинамические закономерности влияния температуры на степень превращения реагента (выход продукта).
- 6. Гомогенные некаталитические процессы: термодинамические закономерности влияния давления на степень превращения реагента (выход продукта).
- 7. Гомогенные некаталитические процессы: термодинамические закономерности влияния концентраций реагентов, продуктов и инертных примесей на равновесие реакций.
- 8. Гетерогенные процессы: общая характеристика и особенности. Аппаратурное оформление гетерогенных некаталитических процессов в системе «газ-твердое тело», «газ-жидкость».
- 9. Кинетические закономерности гетерогенных процессов. Пути интенсификации гетерогенных процессов.
- 10. Гетерогенные некаталитические процессы «газ-твердое тело»: квазигомогенная модель, ее характеристика.
- 11. Гетерогенные некаталитические процессы в системе «газ-твердое тело»: модель с фронтальным перемещением зоны реакции, ее характеристика.
- 12. Гетерогенные некаталитические процессы в системе «газ-твердое тело»: вывод уравнения скорости процесса, его анализ.
- 13. Гетерогенные некаталитические процессы «газ-твердое тело»: кинетические закономерности, пути интенсификации, их теоретическое обоснование.
- 14. Гетерогенные некаталитические процессы в системе «газ-твердое тело»: лимитирующая стадия, способы ее определения.
- 15. Гетерогенные некаталитические процессы в системе «газ-жидкость»: пленочная модель, ее характеристика.
- 16. Гетерогенные некаталитические процессы «газ-жидкость»: кинетические закономерности, пути интенсификации, их теоретическое обоснование.
- 17. Промышленный катализ: сущность, механизм, назначение.
- 18. Виды каталитических процессов, их характеристика.
- 19. Стадии гетерогенно-каталитического процесса на твердом катализаторе.
- 20. Технологические характеристики твердых катализаторов.
- 21. Состав и способы изготовления контактных масс. Аппаратурное оформление гетерогенных каталитических процессов.
- 22. Классификация химических реакторов.
- 23. Моделирование химических реакторов: понятие об элементарном объеме и

- элементарном промежутке времени, уравнение материального баланса химического реактора (в общем виде) и его анализ.
- 24. Общая характеристика идеальных моделей химических реакторов (допущения об идеальности, характер изменения параметров в зависимости от объема реактора и от времени).
- 25. Уравнение материального баланса РИС-Н. Вывод характеристического уравнения.
- 26. Уравнение материального баланса РИС-П. Вывод характеристического уравнения.
- 27. Уравнение материального баланса РИВ. Вывод характеристического уравнения.
- 28. КРИС-Н: характеристика, назначение. Уравнение материального баланса КРИС-Н.
- 29. Графический метод расчета КРИС-Н.
- 30. Аналитический метод расчета КРИС-Н.
- 31. Методика расчета объема РИС-П.
- 32. Сравнение эффективности работы химических реакторов, описываемых различными моделями (по объему и интенсивности работы).
- 33. Сравнение эффективности работы химических реакторов, описываемых различными моделями (по селективности протекания целевой реакции).
- 34. Сравнение эффективности работы химических реакторов, описываемых различными моделями (по выходу продукта).
- 35. Уравнение теплового баланса химического реактора в общем виде, его анализ. Тепловые режимы работы реакторов.
- 36. Математическое описание РИС-Н в различных тепловых режимах.
- 37. Математическое описание РИС-П в различных тепловых режимах.
- 38. Математическое описание РИВ в различных тепловых режимах.
- 39. Тепловая устойчивость работы реакторов (на примере адиабатического РИС-Н).
- 40. Способы повышения степени превращения реагентов в случае проведения процесса в адиабатическом РИС-Н.
- 41. Способы поддержания оптимального температурного режима в случае протекания обратимой экзотермической реакции.
- 42. Причины отклонения от идеальности в реальных реакторах. Характеристика и уравнение материального баланса однопараметрической диффузионной модели.
- 43. Причины отклонения от идеальности в реальных реакторах. Характеристика ячеечной модели.
- 44. Интегральная и дифференциальная функции распределения времени пребывания в в идеальных и реальных проточных реакторах.
- 45. Сущность экспериментального метода изучения функций распределения путем исследования «кривых отклика».

7.4. Методические материалы, определяющие процедуры оценивания знаний, умений и навыков, и опыта деятельности, характеризующих этапы формирования компетенций

Требования к контрольной работе

Контрольная работа – средство проверки умений применять полученные знания для решения задач определенного типа по теме или разделу.

Контрольная работа представляет собой один из видов самостоятельной работы обучающихся. По сути – это изложение ответов на определенные теоретические вопросы по учебной дисциплине, а также решение практических задач. Контрольные проводятся для того, чтобы развить у обучающихся способности к анализу научной и учебной литературы, умение обобщать, систематизировать и оценивать практический и научный материал, укреплять навыки овладения понятиями определенной науки и т.д.

При оценке контрольной работы преподаватель руководствуется следующими критериями:

- работа была выполнена автором самостоятельно;
- обучающийся подобрал достаточный список литературы, который необходим для осмысления темы контрольной работы;
- автор сумел составить логически обоснованный план, который соответствует поставленным задачам и сформулированной цели;
- обучающийся проанализировал материал;
- обучающийся сумел обосновать свою точку зрения;
- контрольная работа оформлена в соответствие с требованиями;
- автор защитил контрольную работу и успешно ответил на все вопросы преподавателя.

Контрольная работа, выполненная небрежно, без соблюдения правил, предъявляемых к ее оформлению, возвращается без проверки с указанием причин. В этом случае контрольная работа выполняется повторно.

Вариант контрольной работы выдается в соответствии с порядковым номером в списке студентов.

Критерии оценки знаний при написании контрольной работы

Отметка «отлично» выставляется обучающемуся, показавшему всесторонние, систематизированные, глубокие знания вопросов контрольной работы и умение уверенно применять их на практике при решении конкретных задач, свободное и правильное обоснование принятых решений.

Отметка «хорошо» выставляется обучающемуся, если он твердо знает материал, грамотно и по существу излагает его, умеет применять полученные знания на практике, но допускает в ответе или в решении задач некоторые неточности, которые может устранить с помощью дополнительных вопросов преподавателя.

Отметка «удовлетворительно» выставляется обучающемуся, показавшему фрагментарный, разрозненный характер знаний, недостаточно правильные формулировки базовых понятий, нарушения логической последовательности в изложении программного материала, но при этом он владеет основными понятиями выносимых на контрольную работу тем, необходимыми для дальнейшего обучения и может применять полученные знания по образцу в стандартной ситуации.

Отметка «неудовлетворительно» выставляется обучающемуся, который не знает большей части основного содержания выносимых на контрольную работу вопросов тем дисциплины, допускает грубые ошибки в формулировках основных понятий и не умеет использовать полученные знания.

Требования к написанию доклада

Доклад – продукт самостоятельной работы обучающегося, представляющий собой публичное выступление по представлению полученных результатов решения определенной учебно-практической, учебно-исследовательской или научной темы.

Критерии оценивания доклада:

Оценка «отлично» выполнены все требования к написанию и защите доклада: обозначена проблема и обоснована её актуальность, сделан краткий анализ различных точек зрения на рассматриваемую проблему и логично изложена собственная позиция,

сформулированы выводы, тема раскрыта полностью, выдержан объём, соблюдены требования к внешнему оформлению, даны правильные ответы на дополнительные вопросы.

Оценка «хорошо» – основные требования к докладу и его защите выполнены, но при этом допущены недочёты. В частности, имеются неточности в изложении материала, отсутствует логическая последовательность в суждениях, не выдержан объём реферата, имеются упущения в оформлении, не допускает существенных неточностей в ответе на дополнительный вопрос.

Оценка «удовлетворительно» — имеются существенные отступления от требований к докладу. В частности, тема освещена лишь частично, допущены фактические ошибки в содержании доклада или при ответе на дополнительные вопросы, во время защиты отсутствует вывод.

Оценка «неудовлетворительно» – тема доклада не раскрыта, обнаруживается существенное непонимание проблемы.

Требования к выполнению тестового задания

Тестирование является одним из основных средств формального контроля качества обучения. Это метод, основанный на стандартизированных заданиях, которые позволяют измерить психофизиологические и личностные характеристики, а также знания, умения и навыки испытуемого.

Основные принципы тестирования, следующие:

- связь с целями обучения цели тестирования должны отвечать критериям социальной полезности и значимости, научной корректности и общественной поддержки;
- объективность использование в педагогических измерениях этого принципа призвано не допустить субъективизма и предвзятости в процессе этих измерений;
- справедливость и гласность одинаково доброжелательное отношение ко всем обучающимся, открытость всех этапов процесса измерений, своевременность ознакомления обучающихся с результатами измерений;
- систематичность систематичность тестирований и самопроверок каждого учебного модуля, раздела и каждой темы; важным аспектом данного принципа является требование репрезентативного представления содержания учебного курса в содержании теста:
- гуманность и этичность тестовые задания и процедура тестирования должны исключать нанесение какого-либо вреда обучающимся, не допускать ущемления их по национальному, этническому, материальному, расовому, территориальному, культурному и другим признакам;

Важнейшим является принцип, в соответствии с которым тесты должны быть построены по методике, обеспечивающей выполнение требований соответствующего федерального государственного образовательного стандарта.

В тестовых заданиях используются четыре типа вопросов:

- закрытая форма – является наиболее распространенной и предлагает несколько альтернативных ответов на поставленный вопрос. Например, обучающемуся задается вопрос, требующий альтернативного ответа «да» или «нет», «является» или «не является», «относится» или «не относится» и т.п. Тестовое задание, содержащее вопрос в закрытой форме, включает в себя один или несколько правильных ответов и иногда называется

выборочным заданием. Закрытая форма вопросов используется также в тестах-задачах с выборочными ответами. В тестовом задании в этом случае сформулированы условие задачи и все необходимые исходные данные, а в ответах представлены несколько вариантов результата решения в числовом или буквенном виде. Обучающийся должен решить задачу и показать, какой из представленных ответов он получил.

- открытая форма вопрос в открытой форме представляет собой утверждение, которое необходимо дополнить. Данная форма может быть представлена в тестовом задании, например, в виде словесного текста, формулы (уравнения), графика, в которых пропущены существенные составляющие части слова или буквы, условные обозначения, линии или изображения элементов схемы и графика. Обучающийся должен по памяти вставить соответствующие элементы в указанные места («пропуски»).
- установление соответствия в данном случае обучающемуся предлагают два списка, между элементами которых следует установить соответствие;
- установление последовательности предполагает необходимость установить правильную последовательность предлагаемого списка слов или фраз.

Критерии оценки знаний при проведении тестирования

Оценка «Отлично» выставляется при условии правильных ответов не менее, чем на 85% тестовых заданий;

Оценка «Хорошо» выставляется при условии правильных ответов не менее, чем на 70% тестовых заданий;

Оценка «Удовлетворительно» выставляется при условии правильных ответов не менее, чем на 51% тестовых заданий;

Оценка «Неудовлетворительно» выставляется при условии правильных ответов менее, чем на 50% тестовых заданий.

Требования к проведению текущей аттестации

Текущий контроль по дисциплине «Химические реакторы» проводится в форме контрольного среза по оцениванию фактических результатов освоения материала пройденных тем дисциплины, и осуществляется ведущим преподавателем.

Текущая аттестация проводится в форме теста.

Оценивание достижений обучающегося проводится по итогам контрольного среза за текущий период с выставлением оценок в ведомости. Прохождение процедуры текущего контроля является обязательным для обучающихся по очной форме обучения. Условием допуска к промежуточной аттестации по дисциплине обучающихся по очной форме является успешное прохождение процедуры текущего контроля (оценка не ниже, чем «удовлетворительно»).

Критерии оценки знаний при проведении текущей аттестации

Оценка «Отлично» выставляется при условии правильных ответов не менее, чем на 85% тестовых заданий;

Оценка «Хорошо» выставляется при условии правильных ответов не менее, чем на 70% тестовых заданий;

Оценка «Удовлетворительно» выставляется при условии правильных ответов не менее, чем на 51% тестовых заданий;

Оценка «Неудовлетворительно» выставляется при условии правильных ответов менее, чем на 50% тестовых заданий.

Результаты текущего контроля используются при проведении промежуточной аттестации.

Критерии оценки знаний на экзамене

Промежуточная аттестация по дисциплине «Химические реакторы» проводится в соответствии с учебным планом в 5-м семестре в виде экзамена в соответствии с графиком проведения экзаменов.

Обучающиеся допускаются к экзамену по дисциплине в случае выполнения всех заданий и мероприятий, предусмотренных программой дисциплины (для обучающихся по очной форме – успешного прохождения текущего контроля).

Экзаменационное задание представляет собой тест в электронном виде или с использованием специальных бланков. Каждый вопрос предполагает только один правильный ответ. При указании студентом двух и более ответов на один вопрос ответ считается неверным.

Тестовые задания для экзамена утверждаются на заседании кафедры и подписываются заведующим кафедрой.

При оценке знаний обучающегося на экзамене преподаватель может принимать во внимание его учебные достижения в семестровый период, результаты текущего контроля знаний. Экзаменатор может выставить оценку без тестирования тем студентам, которые досрочно выполнили все лабораторные работы и самостоятельные задания к ним.

Оценка знаний в соответствии с установленными критериями реализуется следующим образом:

Отметка «отлично» выставляется при условии правильного ответа не менее чем 85% тестовых заданий;

Отметка «хорошо» выставляется при условии правильного ответа не менее чем 70 % тестовых заданий;

Отметка «удовлетворительно» выставляется при условии правильного ответа не менее 50 %;

Отметка «неудовлетворительно» выставляется при условии правильного ответа менее чем на 50 % тестовых заданий.

Результаты текущего контроля используются при проведении промежуточной аттестации.

8. Учебно-методическое и информационное обеспечение дисциплины

8.1. Основная литература

- 1. Кутепов, А.М. Общая химическая технология: учебник для студентов вузов / А.М. Кутепов, Т.И. Бондарева, М.Г. Беренгартен. М.: Академкнига, 2005. 528 с.
- 2. **Закгейм А. Ю. Общая химическая технология: введение в моделирование химикотехнологических процессов [Электронный ресурс]: учебное пособие / А. Ю. Закгейм. -М.: Логос, 2012. - 304 с. - ЭБС «Znanium.com» - Режим доступа: http://znanium.com/catalog.php?bookinfo=468690
- 3. Ефремов, Г.И. Моделирование химико-технологических процессов [Электронный ресурс]: учебник / Г.И. Ефремов. М.: ИНФРА-М, 2019. 255 с. ЭБС «Znanium. com» Режим доступа: http://znanium.com/catalog/product/989195

8.2. Дополнительная литература

- 1. Ефремов, Г.И. Моделирование химико-технологических процессов [Электронный ресурс]: учебник / Г.И. Ефремов. М.: ИНФРА-М, 2016. 255 с. ЭБС «Znanium. com» Режим доступа: http://znanium.com/catalog.php?bookinfo=510221
- 2. Поникаров, И.И. Машины и аппараты химических производств и нефтегазопереработки: учебник / И.И. Поникаров, М.Г. Гайнуллин. СПб.: Лань, 2018. 604 с.
- 3. Сибаров, Д.А. Катализ, каталитические процессы и реакторы: учебное пособие / Д.А. Сибаров, Д.А. Смирнова. СПб.: Лань, 2018. 200 с.

8.3. Информационно-телекоммуникационные ресурсы сети «Интернет»

- Образовательный портал ФГБОУ ВО «МГТУ» [Электронный ресурс]: Режим доступа: https://mkgtu.ru/
- Официальный сайт Правительства Российской Федерации. [Электронный ресурс]: Режим доступа: http://www.government.ru
- Информационно-правовой портал «Гарант» [Электронный ресурс]: Режим доступа: http://www.garant.ru/
- Научная электронная библиотека <u>www.eLIBRARY.RU</u> Режим доступа: http://elibrary.ru/
- Электронный каталог библиотеки Режим доступа: //http://lib.mkgtu.ru:8004/catalog/fol2;
 - Единое окно доступа к образовательным ресурсам: Режим доступа: http://window.edu.ru/

9. Методические указания для обучающихся по освоению дисциплины (модуля)

Методические указания представляют собой комплекс рекомендаций и разъяснений, позволяющих студенту оптимальным образом организовать процесс изучения дисциплины (модуля). В соответствии с требованиями ФГОС, большая часть времени должна отводиться на самостоятельную работу студентов, поэтому особое внимание необходимо уделить разработке для нее методических рекомендаций для самостоятельной работы студентов. Методические указания могут включать:

- краткие теоретические и учебно-методические материалы по каждой теме, позволяющие студентам ознакомиться с сущностью вопросов, изучаемых на занятии;
- вопросы, выносимые на семинарские (практические) занятия, и тексты задач, практических заданий и ситуаций, рассматриваемых на занятиях;
 - учебно-методические указания к семинарским занятиям;
- учебно-методические материалы по самостоятельной работе обучающихся, методические указания по подготовке к практическим, лабораторным и семинарским занятиям, темы рефератов, эссе, групповые задания, индивидуальные творческие задания и др.;
- методические указания по выполнению лабораторных работ (практикума), а также перечень контрольных вопросов или тестовых заданий для проверки готовности студентов к выполнению лабораторных работ (практикума) и оценки приобретенных ими в процессе выполнения работы знаний и навыков;

9.1 Учебно-методические материалы по самостоятельной работе студентов.

Раздел / Тема с указанием основных учебных элементов	Формируемые компетенции	Методы обучения	Способы (формы) обучения	Средства обучения
1	2	3	4	5
Общие закономерности химических процессов, протекающих в химических реакторах.	ОПК-1 ПК-16 ПК-19	закрепления знаний	Работа в библиотеке. Работа с электронными библиотеками и другими ресурсами	Учебно- методические пособия, ПК
Химические реакторы с идеальной структурой потока в изотермическом режиме	ОПК-1 ПК-16 ПК-19		Работа в библиотеке. Работа с электронными библиотеками и другими ресурсами	Учебно- методические пособия, ПК
Химические реакторы с неидеальной структурой потоков	ОПК-1 ПК-16 ПК-19	ких заданий для через навыки.	Работа в библиотеке. Работа с электронными библиотеками и другими ресурсами	Учебно- методические пособия, ПК
Распределение времени пребывания в проточных реакторах	ОПК-1 ПК-16 ПК-19	через	Работа в библиотеке. Работа с электронными библиотеками и другими ресурсами	Учебно- методические пособия, ПК
Теплоперенос в химических реакторах	ОПК-1 ПК-16 ПК-19	Выполнение практических чере	Работа в библиотеке. Работа с электронными библиотеками и другими ресурсами	Учебно- методические пособия, ПК
Промышленные химические реакторы	ОПК-1 ПК-16 ПК-19	Выпол	Работа в библиотеке. Работа с электронными библиотеками и	Учебно- методические пособия, ПК

		другими ресурсам	и
Понятие тепловой устойчивости работы химического реактора	ОПК-1 ПК-16 ПК-19	Работа в библиоте: Работа с электронны библиотеками и другими ресурсам	методические пособия ПК
Реальные химические реакторы	ОПК-1 ПК-16 ПК-19	Работа в библиоте: Работа с электронны библиотеками и другими ресурсам	методические

9.2. Учебно-методические материалы по практическим (лабораторным) занятиям дисциплины

№ раздела дисциплины	Наименование практических занятий	Методы обучения	Способы (формы) обучения	Средства обучения
1		2	3	4
Общие сведения о химических реакторах	Технологические критерии оценки эффективности процессов, протекающих в химических реакторах.	по источнику знаний: лекции, практические работы по назначению: приобретение знаний, анализ, закрепление, проверка знаний по типу познавательной деятельности: объяснительно-иллюстративный, репродуктивный	Самостоятель ная работа студента, домашние задания.	Устная речь, раздаточный материал, лабораторное оборудовани е
Химические реакторы с идеальной структурой потока в изотермическом режиме	Определение лимитирующей стадии процесса восстановления диоксида углем.	по источнику знаний: лекции, практические работы по назначению: приобретение знаний, анализ, закрепление, проверка знаний по типу познавательной деятельности: объяснительно-иллюстративный, репродуктивный	Самостоятель ная работа студента, домашние задания.	Устная речь, раздаточный материал, лабораторное оборудовани е
Химические реакторы с неидеальной структурой	Определение лимитирующей стадии гетерогенного	по источнику знаний: лекции, практические работы	Самостоятель ная работа студента, домашние	Устная речь, раздаточный материал, лабораторное

ПОТОКОВ	процесса обжига сульфида цинка	по назначению: приобретение знаний, анализ, закрепление, проверка знаний по типу познавательной деятельности: объяснительно- иллюстративный,	задания.	оборудовани е
Распределение времени пребывания в проточных реакторах	Сравнение эффективности работы проточных реакторов, описываемых различными моделями (РИС- Н, РИВ, КРИС- Н), в изотермическом режиме по производительно сти (интенсивности) их работы.	по источнику знаний: лекции, практические работы по назначению: приобретение знаний, анализ, закрепление, проверка знаний по типу познавательной деятельности: объяснительно- иллюстративный, репродуктивный	Самостоятель ная работа студента, домашние задания.	Устная речь, раздаточный материал, лабораторное оборудовани е
Теплоперенос в химических реакторах	Сравнение эффективности работы проточных реакторов, описываемых различными моделями (РИС-Н), в изотермическом режиме по селективности процесса получения целевого продукта (по выходу продукта).		Самостоятель ная работа студента, домашние задания.	Устная речь, раздаточный материал, лабораторно оборудовани е
Промышленные химические реакторы	Расчет скорости стадии сложной химической реакции.	по источнику знаний: лекции, практические работы по назначению:	Самостоятель ная работа студента, домашние задания.	Устная речь раздаточный материал, лабораторно оборудовани

		приобретение знаний, анализ, закрепление, проверка знаний по типу познавательной деятельности: объяснительно-иллюстративный, репродуктивный		e
Понятие тепловой устойчивости работы химического реактора	Оценка тепловой устойчивости химического реактора.	по источнику знаний: лекции, практические работы по назначению: приобретение знаний, анализ, закрепление, проверка знаний по типу познавательной деятельности: объяснительно- иллюстративный, репродуктивный	Самостоятель ная работа студента, домашние задания.	Устная речь, раздаточный материал, лабораторное оборудовани е
Реальные химические реакторы	Вычисление критерия Пекле химического реактора	по источнику знаний: лекции, практические работы по назначению: приобретение знаний, анализ, закрепление, проверка знаний по типу познавательной деятельности: объяснительно-иллюстративный, репродуктивный	Самостоятель ная работа студента, домашние задания.	Устная речь, раздаточный материал, лабораторное оборудовани е

10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю), включая перечень программного обеспечения и информационных справочных систем (при необходимости)

Информационные технологии, используемые при осуществлении образовательного процесса по дисциплине позволяют:

- организовать процесс образования путем визуализации изучаемой информации посредством использования презентаций, учебных фильмов;
 - контролировать результаты обучения на основе компьютерного тестирования;

- автоматизировать расчеты аналитических показателей, предусмотренные программой научноисследовательской работы;
 - автоматизировать поиск информации посредством использования справочных систем.

10.1. Перечень необходимого программного обеспечения

Наименование программного обеспечения, производитель	Реквизиты подтверждающего документа (№ лицензии, дата приобретения, срок действия)	
Microsoft Office Word 2010	Номер продукта 14.0.6024.1000 SP1 MSO (14.0.6024.1000) 02260-018-0000106-48095	
Kaspersky Anti-virus 6/0	№ лицензии 26FE-000451-5729CF81 Срок лицензии 07.02.2020	
Adobe Reader 9	Бесплатно, 01.02.2019,	
K-Lite Codec Pack, Codec Guide	Бесплатно, 01.02.2019, бессрочный	
OCWindows7 Профессиональная,	№ 00371-838-5849405-85257, 23.01.2012,	
MicrosoftCorp.	бессрочный	
7-zip.org	GNU LGPL	
Офисный пакет WPSOffice	Свободно распространяемое ПО	

10.2. Перечень необходимых информационных справочных систем

Каждый обучающийся в течение всего периода обучения обеспечен индивидуальным неограниченным доступом к электронно-библиотечным системам:

- 1. Электронная библиотечная система «IPRbooks» (http://www.iprbookshop.ru/)
- 2. Электронная библиотечная система «ZNANIUM.COM» (http://www.znanium.com).

Для обучающихся обеспечен доступ (удаленный доступ) к следующим современным профессиональным базам данных, информационным справочным и поисковым системам:

- 1. Консультант Плюс справочная правовая система (http://consultant.ru)
- 2. Web of Science (WoS) (http://apps.webofknowledge.com)
- 3. Научная электронная библиотека (НЭБ) (http://www.elibrary.ru)
- 4. Электронная Библиотека Диссертаций (https://dvs.rsl.ru)
- 5. КиберЛенинка (http://cyberleninka.ru)
- 6. Национальная электронная библиотека (http://нэб.рф)

СОГЛАСОВАНО
С БИБЛИОТЕКОЙ МГТУ

______/САМУСОВА Е.Е./

11. Описание материально-технической базы необходимой для осуществления образовательного процесса по дисциплине (модулю)

Наименования специальных помещений и помещений для самостоятельной работы

Оснащенность специальных помешений и помешений для самостоятельной работы

Перечень лицензионного программного обеспечения. Реквизиты подтверждающего документа

Специальные помещения

химии кафедры химии, физики и физикохимических методов исследования: a. 302.

Лаборатория общей и неорганической химии кафедры химии, физики и физико-химических методов исследования с препараторской: а. 303, а. 304.

Лаборатория аналитической Учебная мебель: столы, стулья, доска для письма мелом; лабораторные столы, шкафы, наглядные пособия, реактивы. оборудование - весы технические, требующее весы аналитические. автоматический титратор, роторный испаритель, магнитная мешалка, рН-метр, сушильный шкаф, ультразвуковая баня Учебная мебель: столы, стулья, доска для письма мелом: лабораторные столы, вытяжной шкаф, мойка, справочная литература, наглядные пособия. реактивы, оборудование - весы технические, весы цифровые, автоматический титратор, магнитная мешалка, рН-метр, анализатор вольтамперметрический, термостат, ультразвуковая баня, центрифуга, дистиллятор, потенциостат.

- 1. Операционная система «Windows», договор 0376100002715000045-0018439-01 19.06.2015; свободно (бесплатное распространяемое не лицензирования) программное обеспечение:
- 2. Программа для воспроизведения аудно и видео файлов «VLC media player»;
- 3. Программа для воспроизведения аудио и видео файлов «K-lite codec»;
- 4. Офисный пакет «WPS office»;
- 5. Программа для работы с архивами «7zip»;
- 6. Программа для работы с документами формата .pdf «Adobe reader»;

Помещения для самостоятельной работы

В качестве помещений для самостоятельной работы могут быть: Мультимедийная лаборатория а.228, ул. Первомайская, 191, 2 этаж; читальный зал: ул. Первомайская, 191, 3 этаж.

Компьютерный класс на 8 посадочных мест, оснащенный компьютерами с выходом в Интернет, лабораторным оборудованием, наглядными пособиями, справочной литературой. Читальный зал Переносное мультимедийное оборудование, компьютеры на 15 player»; посадочных мест, оснащенный компьютерами Pentium с выходом в Интернет, учебнометодической литературой.

- 1. Операционная система «Windows». 0376100002715000045договор 0018439-01 от 19.06.2015; свободно распространяемое бесплатное требующее не программное лицензирования)
- 1. Программа для воспроизведения аудио и видео файлов «VLC media
- 2. Программа для воспроизведения аудио и видео файлов «K-lite codec»;
- 3. Офисный пакет «WPS office»;

обеспечение:

- 4. Программа для работы с архивами «7zip»;
- Программа для работы документами формата .pdf «Adobe reader»:

Дополнения и изменения в рабочей программе на _____/___ учебный год

В рабочую программу		
(наименование дисциплины)		
для направления (специальност	и)	
(номер направления (специальн	юсти)	
вносятся следующие дополнени	ия и изменения:	
Дополнения и изменения внёс _	(должность, Ф.И.С	
	(должность, Ф.Рг.С	л., подпись)
		*
Рабочая программа пересмотре	на и одобрена на заседани	и кафедры
(наименование кафедры)		
		*
«»20	г.	
Заведующий кафедрой		
эвьедующий кафедрои	(подпись)	(Ф.И.О.)