Документ подписан простой электронной подписью МИНОБРНАУКИ РОССИИ

Информация о владельце:

ФИО: Куижева Саида Казбековна

должность: Ректор федеральное государственное бюджетное образовательное учреждение

Дата подписания: 11.04.2022 12:06:45 высшего образования

Уникальный программный **Майкопский государственный технологический университет**»

71183e1134ef9cfa69b206d480271b3c1a975e6f

Политехнический колледж

Предметная (цикловая) комиссия математики, информатики и информационных технологий

УТВЕРЖДАЮ

Зам. директора по учебно-методической

Ф.А.Топольян

2020 г.

Фонд оценочных средств

измерения уровня освоения студентами

дисциплины ЕН. 01 Математика

специальности 40.02.01 Право и организация социального обеспечения

Одобрено предметной (цикловой комиссией) математики, информатики и информационных технологий

Председатель цикловой комиссии

О.Е. Иванова

Протокол № <u>40 от 45. 06</u>2020 г.

Составлено на основе ФГОС СПО и учебного плана МГТУ по специальности 40.02.01 Право и организация социального обеспечения.

Зам. директора по учебно-

методинеской работе

ф.А. Топольян

«28» 08 2020г.

Разработчики:

Тумасян Н. А.

-преподаватель высшей категории политехнического колледжа МГТУ

1. Паспорт фонда оценочных средств

Оценочные средства предназначены для контроля и оценки образовательных достижений обучающихся, освоивших программу дисциплины Математика.

Фонд оценочных средств включает контрольные материалы для проведения **текущего** контроля в форме устного опроса, тестирования, а также оценочные средства для проведения контрольного среза знаний за текущий период обучения, оценочные средства для проверки остаточных знаний за предыдущий период обучения и **промежуточной аттестации** в форме дифференцированного зачета в 3 семестре.

1.1 Перечень формируемых компетенций

Изучение дисциплины Математика направлено на формирование следующих компетенций:

Код компетен	Содержание компетенции		остав компетенций из перечня)
ции	*	Знает:	Умеет:
OK 1.	Понимать сущность и социальную значимость своей будущей профессии, проявлять к ней устойчивый интерес.	1	
OK 2.	Организовывать собственную деятельность, выбирать типовые методы и способы выполнения профессиональных задач, оценивать их эффективность и качество.	1, 2	
OK 3.	Принимать решения в стандартных и нестандартных ситуациях и нести за них ответственность;	1,2	1
ОК 4.	Осуществлять поиск и использование информации, необходимой для эффективного выполнения профессиональных задач, профессионального и личностного развития.	1, 2	1
OK 5.	Использовать информационно- коммуникационные технологии в профессиональной деятельности.	1, 2	1
ОК 6.	Работать в коллективе и команде, обеспечивать ее сплочение, эффективно общаться с коллегами, руководством, потребителями.	1	
ОК 9	Ориентироваться в условиях частой смены технологий в профессиональной деятельности.	1, 2	1

Перечень требуемого компонентного состава компетенций

В результате освоения дисциплины студенты должны:

Уметь:

- **У1.** Решать задачи на отыскание производной сложной функции, производных второго и высших порядков;
 - У2. Применять основные методы интегрирования при решении задач;
- **У3.** Применять методы математического анализа при решении задач прикладного характера, в том числе профессиональной направленности.

Знать:

- 31. Основные понятия и методы математического анализа;
- 32. Основные численные методы решения прикладных задач.

Этапы формирования компетенций

No		Виды работ		Код ком-	Конкретизация
разд	Раздел/тема дисциплины	Аудиторная	CPC	петен-	компетенций (знания,
ела		Тудиторпал	CrC	ции	умения)
1.	Раздел 1. Комплексные числа				Знать: 31, 32
1.	1 asgest 1. Rominierenbie 4nesia				Уметь: У1, У2, У3
1.1	Действительные числа, расширение множества действительных чисел. Алгебраическая, тригонометрическая, показательная форма записи комплексных чисел.	устный опрос	Домашняя контрольная работа, подготовка реферата	OK 1-6, 9	Знать: 31
1.2	Действия над комплексными числами. Свойства сопряженных чисел.	устный опрос	Домашняя контрольная работа, подготовка реферата	OK 1-6, 9	Знать: 31, 32 Уметь: У1
1.3	Практическое занятие Действия над комплексными числами в алгебраической форме.	устный опрос, выполнение практически х заданий	Домашняя контрольная работа, подготовка реферата	OK 1-6, 9	Знать: 31, 32 Уметь: У1
1.4	Практическое занятие Действия над комплексными числами в тригонометрической и показательной формах.	устный опрос, выполнение практически х заданий	Домашняя контрольная работа, подготовка реферата	OK 1-6, 9	Знать: 31, 32 Уметь: У1
1.5	Контрольная работа №1 по теме «Комплексные числа»	выполнение заданий по карточкам		OK 1-6, 9	Знать: 31, 32 Уметь: У1
2.	Раздел 2. Дифференциальное и интегральное исчисление.				
2.1	Определение производной, правила дифференцирования. Формулы дифференцирования. Производная сложной и обратной функций.	устный опрос,	конспект	OK 1-6, 9	Знать: 31, 32 Уметь: У1
2.2	Практическое занятие Дифференцирование сложной и обратной функции.	устный опрос, выполнение практически х заданий		OK 1-6, 9	Знать: 31, 32 Уметь: У1
2.3	Механический смысл производной. Геометрический смысл производной.	устный опрос	конспект	ОК 1-6, 9	Знать: 31, 32 Уметь: У1
2.4	Практическое занятие Составление уравнения касательной. Механический смысл производной.	устный опрос, выполнение практически х заданий	подготовка реферата	OK 1-6, 9	Знать: 31, 32 Уметь: У1

2.5	Применение производной к исследованию функций и построению графиков.	устный опрос	работа над составление м терминолог ического словаря	OK 1-6, 9	Знать: 31, 32 Уметь: У1
2.6	Практическое занятие Построение графиков функций с помощью производной.	устный опрос, выполнение практически х заданий	Графическа я работа	OK 1-6, 9	Знать: 31, 32 Уметь: У1
2.7	Понятие производной второго и высших порядков. Механический смысл производной второго порядка.	устный опрос	конспект	OK 1-6, 9	Знать: 31, 32
2.8	Практическое занятие Нахождение производных второго и выше порядков от заданных функций.	устный опрос, выполнение практически х заданий		OK 1-6, 9	Знать: 31, 32 Уметь: У1
2.9	Неопределенный интеграл и его свойства. Способы интегрирования: непосредственное, замены переменной, интегрирование по частям.	устный опрос	конспект	OK 1-6, 9	Знать: 31, 32 Уметь: У2
2.10	Практическое занятие Методы интегрирования: замена переменной в неопределенном интеграле, интегрирование по частям.	устный опрос, выполнение практически х заданий	подготовка презентации по теме: «Интеграл»	OK 1-6, 9	Знать: 31, 32 Уметь: У2
2.11	Определенный интеграл и его свойства. Формула Ньютона- Лейбница.	устный опрос	конспект	OK 1-6, 9	Знать: 31, 32 Уметь: У1
2.12	Практическое занятие Вычисление определенного интеграла по формуле Ньютона-Лейбница.	устный опрос, выполнение практически х заданий		ОК 1-6, 9	Знать: 31, 32 Уметь: У1
2.13	Дифференциальные уравнения первого и второго порядка.		конспект	OK 1-6, 9	
2.14	Практическое занятие Дифференциальные уравнения 1 порядка, уравнения с разделяющимися переменными. Однородные дифференциальные уравнения 1 порядка.	устный опрос, выполнение практически х заданий		OK 1-6, 9	Знать: 31, 32 Уметь: У3
2.15	Контрольная работа 2 по теме «Дифференциальные уравнения»			OK 1-6, 9	Знать: 31, 32 Уметь: У3
3.	Раздел 3. Теория вероятностей				
3.1	Элементы теории вероятности. Предмет теории вероятности.	устный опрос	конспект	OK 1-6, 9	Знать: 31, 32 Уметь: У3
3.2	Основные определения и теоремы. Формула полной	устный опрос	конспект	OK 1-6, 9	Знать: 31, 32 Уметь: У3

	вероятности.				
2 2	Практическое занятие	устный	конопакт	OK 1-6, 9	Знать: 31, 32
3.3	Нахождение вероятности события.	опрос	конспект		Уметь: У3

2. Показатели, критерии оценки компетенций

2.1 Структура фонда оценочных средств для текущей и промежуточной аттестации

		Код	Наименование оцено	чного средства
№ п/п	Контролируемые разделы/темы дисциплины	контролируе мой компетенции	Текущий контроль	Промежуточная аттестация
1.	Раздел 1. Комплексные числа			
1.1	Действительные числа, расширение множества действительных чисел. Алгебраическая, тригонометрическая, показательная форма записи комплексных чисел.	OK 1-6, 9	Вопросы для текущего контроля	Вопросы для экзамена
1.2	Действия над комплексными числами. Свойства сопряженных чисел.	ОК 1-6, 9	Вопросы для текущего контроля	Вопросы для экзамена
1.3	Практическое занятие Действия над комплексными числами в алгебраической форме.	OK 1-6, 9	Вопросы для текущего контроля Задачи для практических расчетов Конспект	Вопросы для экзамена
1.4	Практическое занятие Действия над комплексными числами в тригонометрической и показательной формах.	OK 1-6, 9	Вопросы для текущего контроля	Вопросы для экзамена
1.5	Контрольная работа №1 по теме «Комплексные числа»	OK 1-6, 9	Вопросы для текущего контроля	Вопросы для экзамена
2.	Раздел 2. Дифференциальное			
2.1	и интегральное исчисление. Определение производной, правила дифференцирования. Формулы дифференцирования. Производная сложной и обратной функций.	OK 1-6, 9	Вопросы для текущего контроля	Вопросы для экзамена
2.2	Практическое занятие Дифференцирование сложной и обратной функции.	OK 1-6, 9	Вопросы для текущего контроля Задачи для практических расчетов	Вопросы для экзамена
2.3	Механический смысл производной. Геометрический смысл производной.	OK 1-6, 9	Вопросы для текущего контроля Конспект	Вопросы для экзамена
2.4	Практическое занятие Составление уравнения касательной. Механический смысл производной.	OK 1-6, 9	Вопросы для текущего контроля Задачи для практических расчетов	Вопросы для экзамена
2.5	Применение производной к исследованию функций и построению графиков.	ОК 1-6, 9	Вопросы для текущего контроля	Вопросы для экзамена
2.6	Понятие производной второго и высших порядков. Механический смысл производной второго	OK 1-6, 9	Вопросы для текущего контроля	Вопросы для экзамена

	порядка.			
2.7	Практическое занятие Нахождение производных второго и выше порядков от заданных функций.	OK 1-6, 9	Вопросы для текущего контроля Задачи для практических расчетов	Вопросы для экзамена
2.8	Практическое занятие Построение графиков функций с помощью производной.	OK 1-6, 9	Вопросы для текущего контроля Задачи для практических расчетов	Вопросы для экзамена
2.9	Неопределенный интеграл и его свойства. Способы интегрирования: непосредственное, замены переменной, интегрирование по частям.	OK 1-6, 9	Вопросы для текущего контроля	Вопросы для экзамена
2.10	Практическое занятие Методы интегрирования: замена переменной в неопределенном интеграле, интегрирование по частям.	OK 1-6, 9	Вопросы для текущего контроля Задачи для практических расчетов	Вопросы для экзамена
2.11	Определенный интеграл и его свойства. Формула Ньютона- Лейбница.	ОК 1-6, 9	Вопросы для текущего контроля	Вопросы для экзамена
2.12	Практическое занятие Вычисление определенного интеграла по формуле Ньютона-Лейбница.	OK 1-6, 9	Вопросы для текущего контроля Задачи для практических расчетов	Вопросы для экзамена
2.13	Дифференциальные уравнения первого и второго порядка	ОК 1-6, 9	Вопросы для текущего контроля	Вопросы для экзамена
2.14	Практическое занятие Дифференциальные уравнения 1 порядка, уравнения с разделяющимися переменными. Однородные дифференциальные уравнения 1 порядка.	OK 1-6, 9	Вопросы для текущего контроля Задачи для практических расчетов	Вопросы для экзамена
2.15	Контрольная работа 2 по теме «Дифференциальные уравнения»	ОК 1-6, 9		Вопросы для экзамена
3.	Раздел 3. Теория вероятностей			
3.1	Элементы теории вероятности. Предмет теории вероятности.	OK 1-6, 9	Вопросы для текущего контроля	Вопросы для экзамена
3.2	Основные определения и теоремы. Формула полной вероятности.	ОК 1-6, 9	Вопросы для текущего контроля	Вопросы для экзамена
3.3	Практическое занятие Нахождение вероятности события.	OK 1-6, 9	Вопросы для текущего контроля	Вопросы для экзамена

Типовые критерии оценки сформированности компетенций

Оценка	Балл	Обобщенная оценка компетенции
«Неудовлетворительно	» 2 балла	Обучающийся не овладел оцениваемой компетенцией, не раскрывает сущность поставленной проблемы. Не умеет применять теоретические знания в решении практической

		П
		ситуации. Допускает ошибки в принимаемом решении, в
		работе с нормативными документами, неуверенно
		обосновывает полученные результаты. Материал излагается
		нелогично, бессистемно, недостаточно грамотно.
«Удовлетворительно»	3 балла	Обучающийся освоил 60-69% оцениваемой компетенции,
Access Process		показывает удовлетворительные знания основных вопросов
		программного материала, умения анализировать, делать
		выводы в условиях конкретной ситуационной задачи. Излагает
		решение проблемы недостаточно полно, непоследовательно,
		обосновывать свои суждения.
«Хорошо»	4 балла	Обучающийся освоил 70-80% оцениваемой компетенции,
		умеет применять теоретические знания и полученный
		практический опыт в решении практической ситуации. Умело
		работает с нормативными документами. Умеет
		аргументировать свои выводы и принимать самостоятельные
		решения, но допускает отдельные неточности, как по
		содержанию, так и по умениям, навыкам работы с нормативно-
		правовой документацией.
«Отлично»	5	Обучающийся освоил 90-100% оцениваемой компетенции,
((O13111-1110))	_	умеет связывать теорию с практикой, применять полученный
	баллов	практический опыт, анализировать, делать выводы, принимать
		высказывать и обосновывать свои суждения. Демонстрирует
		умение вести беседы, консультировать граждан, выходить из
		конфликтных ситуаций. Владеет навыками работы с
		нормативными документами. Владеет письменной и устной
		коммуникацией, логическим изложением ответа.

3. Типовые контрольные задания или иные материалы необходимые для оценки знаний, умений навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы.

- 1. Контрольные вопросы и задания для проведения текущего контроля
- 1. Дайте определение комплексного числа.
- 2. Что называется суммой и умножением комплексных чисел.
- 3. Какими свойствами обладает сложение комплексных чисел.
- 4. Действия над комплексными числами.
- 5. Запись комплексных чисел: алгебраическая, тригонометрическая, показательная.
- 6. Числовая последовательность. Предел числовой последовательности.
- 7. Монотонные последовательности.
- 8. Понятие функции. Способы задания функции. Основные характеристики функций.
- 9. Предел функции в точке. Односторонние пределы. Предел функции при .
- 10. Основные теоремы о пределах.
- 11. Замечательные пределы.
- 12. Непрерывность функции в точке. Основные теоремы о непрерывных функциях.
- 13. Свойства функций, непрерывных на отрезке.
- 14. Классификация точек разрыва функции.
- 15. Задачи, приводящие к понятию производной. Определение производной, её геометрический и механический смысл.
- 16. Основные правила дифференцирования. Производная сложной и обратной функций. Таблица производных.
- 17. Производные высших порядков.
- 18. Дифференцирование неявно заданной функции. Дифференцирование параметрически заданных функций. Логарифмическое дифференцирование.
- 19. Понятие дифференциала функции, его геометрический смысл. Дифференциалы высших порядков.
- 20. Основные теоремы дифференциального исчисления. Правило Лопиталя.
- 21. Интервалы монотонности, алгоритм их отыскания. Экстремум функции.
- 22. Наибольшее и наименьшее значения функции, непрерывной на отрезке.
- 23. Выпуклость графика функции, точки перегиба.
- 24. Асимптоты графика функции.
- 25. Общая схема исследования функции и построения её графика.
- 27. Что называется неопределенным интегралом функции f (x)?
- 28. Что называется непосредственным интегрированием?
- 29. Какие методы интегрирования вы знаете?
- 30. Что такое метод по частям?
- 31. Что называется определенным интегралом функции f на отрезке [a;b]?
- 32. В чем заключается геометрический смысл определенного интеграла от непрерывной неотрицательной функции?
- 33. Перечислите основные свойства определенного интеграла.
- 34. Сформулируйте теорему о дифференцировании интеграла по верхнему пределу.
- 35. Запишите формулу Ньютона Лейбница.
- 36. В чем заключается формула замены переменной интегрирования в определенном интеграле?
- 37. Запишите формулу интегрирования по частям для определенного интеграла.
- 38. Дайте определение размещения, перестановки, сочетания.
- 39. Чему равна полная вероятность?
- 40. Чему равна дискретная случайная величина и закон ее распределения.
- 41. Что такое выборки, выборочные распределения?
- 42. Алгебра событий. Классическое и статистическое определение вероятности событий.
- 50. Геометрическое и аксиоматическое определение вероятности.
- 51. Теоремы сложения и умножения вероятностей. Условная вероятность. Теорема сложения вероятностей совместных событий.

- 52. Формула полной вероятности. Формула Байеса. Формула Бернулли.
- 53. Локальная и интегральная теоремы Лапласа. Формула Пуассона.

Тема: «Действия над комплексными числами»

Практическая работа

Справочный материал

Алгебраическая форма комплексного числа – z = a + bi (а –действительная часть, bi – мнимая часть комплексного числа)

Тригонометрическая запись комплексного числа – $z = r^*(\cos + i^* \sin)$

Показательная форма комплексного числа – $z = r^*e$

Z = a + bi и Z = a - bi -сопряженные комплексные числа.

Свойства сопряженных комплексных чисел

1.
$$Z + Z = 2a$$

2.
$$Z * Z = a^2 + b^2$$

$$Z_1 * Z_2$$

3.
$$Z_1: Z_2 = \dots$$

 $Z_2 * Z_2$

4.
$$1 : Z = Z$$

5.
$$Z * Z^{-1} = 1$$

6.
$$Z_1: Z_2 = Z_1 * Z_2^{-1}$$

7.
$$Z^0 = 1$$

8.
$$|Z| = \sqrt{a^2 + b^2}$$

Действия над комплексными числами:

$$z_1 = a + bi \ u \ z_2 = c + di$$
, TO

CYMMA:
$$Z_1 + Z_2 = (a + bi) + (c + di) = (a + c) + (b + d)i$$

PA3HOCTb:
$$Z_1 - Z_2 = (a + bi) - (b + di) = (a - c) + (b - d)i$$

ПРОИЗВЕДЕНИЕ:
$$Z_1 * Z_2 = (a + bi) * (c + di) = (ac - bd) + (ad + bc)i$$

HACTHOE:
$$Z_1: Z_2 = \frac{ac + bd}{c^2 + d^2} + \frac{bc - ad}{c^2 + d^2}$$

Вычислить:

1)
$$(-12 + 5i) + (7 - 3i)$$

2)
$$(5+7i)*(-3-4i)$$
,

3)
$$(-2+3i)*(1-4i)$$
,

4)
$$(-10-8i)-(7-6i)$$
,

5)
$$(-7-8i)-(3-4i)$$
,

Найдите сумму, разность, произведение, частное комплексных чисел:

1)
$$z_1 = -2 + I$$
 $z_2 = 3 + (-1)i$
2) $z_1 = 2 + 3i$ $z_2 = 2 + (-3)i$

2)
$$z_1 = 2 + 3i$$
 $z_2 = 2 + (-3)i$

3)
$$z_1 = 1 + (-2)i$$
 $z_2 = (-1) + (-2)i$

4)
$$z_1 = 2 + (-1)i$$
 $z_2 = 2 + 0i$

5)
$$z_1 = -3 + 0i$$
 $z_2 = 0 + 2i$
6) $z_1 = -3$ $z_2 = 5i$

6)
$$z_1 = -3$$
 $z_2 = 5$

7)
$$z_1 = 1 + (-2)i$$
 $z_2 = -1 + 2i$

8)
$$z_1 = 2 + (-2)i$$
 $z_2 = -1 + i$

Найти модуль и аргумент следующих комплексных чисел:

1)
$$z = 1 + i$$

2)
$$z = \sqrt{3} - i$$

3)
$$z = I \sqrt{2}$$

4)
$$z = i$$

Решить уравнение:

1)
$$x^2 + 3x + 4 = 0$$

2)
$$x^2 + 2x + 2 = 0$$

3)
$$x^2 + 3x - 4 = 0$$

4) $x^2 + 2x + 1 = 0$

Ответьте на вопросы:

- 1. Какие числа называются комплексными?
- 2. Какие числа называются сопряженными?
- 3. Запишите комплексное число в алгебраической форме.
- 4. Как выразить комплексное число в тригонометрической и показательной форме?
- 5. Чему равна сумма комплексных чисел?
- 6. Как вычислить разность комплексных чисел?
- 7. Запишите формулу произведения комплексных чисел.
- 8. Перечислите основные свойства сопряженных комплексных чисел
- 9. Что такое модуль комплексного числа?

ЛИСТ САМООЦЕНКИ

№ пп	Название изучаемой части	самооценка	Оценка преподавателя
1	Множества числовых систем		
2	Певод десятичных бесконечных периодических дробей в обыкновенные		
3	Понятие комплексного числа		
4	Действия над комплексными числами		
5	Алгебраическая, тригонометрическая, показательные формы записи КЧ		
6	Практическая часть		
7	Самостоятельня работа (рефераты, доклады)		
8	Контрольная работа		

СЕМИНАР.

ДЕЙСТВИЯ НАД КОМПЛЕКСНЫМИ ЧИСЛАМИ.

Задание №1.

Используя правило сложения комплексных чисел $(a_1+b_1i)+(a_2+b_2i)=a_1+a_2+(b_1+b_2)i$, найдите:

1)
$$(3-4i)+(-5+7i)$$

2)
$$(6-3i)+(4-5i)$$

3)
$$(-3+5i)+(2-4i)$$

Задание №2.

Используя правило умножения комплексных чисел

$$(a_1 + b_1 i) \cdot (a_2 + b_2 i) = a_1 \cdot a_2 - b_1 \cdot b_2 + (a_1 b_2 + a_2 b_1) i$$
 найдите:

1)
$$(3-4i) \cdot (-5+7i)$$

2)
$$(6-3i)\cdot(4-5i)$$

$$(-3+5i)\cdot(2-4i)$$

4)
$$(-5+7i)\cdot(3+4i)$$

Задание №3.

Используя определение сопряженного комплексного числа, найдите:

(Определение. Комплексные числа $a+bi_u a-bi_{\text{называют}}$ сопряженными друг с другом. Их произведение равно действительному положительному числу a^2+b^2 .)

1)
$$\frac{-5+7i}{3-4i}$$
2)
$$\frac{5-7i}{3+4i}$$

Задание №4.

Найдите:

1)
$$(1+i)^4$$
 2) i^{13}

Задание №5.

Найдите произведение двух комплексных чисел $z_1 \cdot z_2$.

$$(z_1 \cdot z_2 = r_1 \cdot r_2 \cdot [\cos(\varphi_1 + \varphi_2) + i\sin(\varphi_1 + \varphi_2)])$$

1)
$$z_1 = 2 \cdot \left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)_{\text{M}} z_2 = 3 \cdot \left(\cos\frac{\pi}{12} + i\sin\frac{\pi}{12}\right)$$

$$z_1 = 10 \cdot \left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)_{\text{M}} z_2 = 2 \cdot \left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$$

Задание №6.

 $\frac{z_1}{}$

Найдите частное от деления двух комплексных чисел $^{\mathbb{Z}_{2}}$.

$$\begin{aligned} \frac{z_{1}}{z_{2}} &= \frac{\mathbf{r}_{1}}{\mathbf{r}_{2}} \cdot \left[\cos(\varphi_{1} - \varphi_{2}) + i\sin(\varphi_{1} - \varphi_{2}) \right] \\ z_{1} &= 2 \cdot \left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6} \right)_{\mathbf{H}} z_{2} = 3 \cdot \left(\cos\frac{\pi}{12} + i\sin\frac{\pi}{12} \right) \\ z_{1} &= 10 \cdot \left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4} \right)_{\mathbf{H}} z_{2} = 2 \cdot \left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4} \right) \end{aligned}$$

Задание №7.

Используя формулу Муавра, найдите z^6 :

$$(z^{n} = r \cdot [\cos(\varphi + i\sin\varphi)]^{n} = r^{n} \cdot (\cos(\varphi + i\sin\varphi), n \in \mathbb{Z};)$$

$$z = \left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$$

Задание №8.

Даны числа a = 1 - i и $b = 1 + \sqrt{3}i$. Необходимо представить числа а и b в тригонометрической форме.

Контрольная работа по теме «Комплексные числа»

I вариант

- 1. Найдите z + z; z * z; |z|, если z = 7 3i
- 2. Найдите $z_1: z_2$, если $z_1 = 2 i$, а $z_2 = 3 + 2i$
- 3. Решить уравнение: a) $x^2 4x + 8 = 0$, 6) (2 + i) + (1 + i)(x + y) = 7 + 3i
- 4. Найдите модуль и аргумент числа z и запишите его тригонометрическую форму:

Z = 3 - 3i

.....

Контрольная работа по теме «Комплексные числа»

II вариант

1. Найдите z + z; z * z; |z|, если z = 9 - 5i

2. Найдите $z_1: z_2$, если $z_1 = 2 + i$, а $z_2 = 3 - 2i$

3. Решить уравнение: a) $x^2 - 2x + 5 = 0$, 6) (2 - i)*x + (2 + i)(1 + y) = 3 - 7i

4. Найдите модуль и аргумент числа **z** и запишите его тригонометрическую форму:

$$Z = 3 + 3i$$

Задания для проведения контроля остаточных знаний.

Тест: «Интегралы»

Вариант - 1.

Первый уровень. При выполнении заданий первого уровня в бланке ответов

укажите цифру, которая обозначает выбранный Вами ответ.

1.	Дописать формулы: площадь криволинейной трапеции равна $S =$	
2.	Укажите первообразную функции $f(x) = 3x^2 - \sin x$	1) $F(x) = x^3 - \cos x$ 2) $F(x) = 2x + \sin x$ 3) $F(x) = x^3 + \cos x$ 4) $F(x) = \frac{x^3}{3} + \cos x$
3.	Найдите интеграл: $\int x^3 dx$	1) $x^4 + c$ 2) $3x^2 + c$ 3) $\frac{1}{4}x^4 + c$ 4) $3x + c$
4.	Найдите интеграл: $\int 6x^2 dx$	1) $2x^3 + c$ 2) $2x^3 + x$ 3) $12x^2 + c$ 4) $3x^3 + c$
5.	Найдите интеграл: $\int (3x^2 + 4)dx$	1) $x^3 + 4$ 2) $x^3 + 4x + c$ 3) $6x + 4 + c$ 4) $3x^3 + 4x + c$
6.	Скорость точки, движущейся прямолинейно задана уравнением $V=t^2-4t+3$. Найдите закон движения.	$S(t) = \frac{t^3}{3} - 2t^2 + 3t + c$ $2) S(t) = t^3 - t^2 + 3t + c$ $3) S(t) = 2t - 4$

7.	Найдите интеграл: $\int \left(3x^2 + \frac{4}{\sqrt{1-x^2}}\right) dx$	4) $S(t) = \frac{t^{3}}{3} - 2t^{2} + 3t$ 1) $3x^{3} + 4\arcsin x + c$ 2) $6x + 4\arcsin x + c$ 3) $x^{3} - 4\arcsin x + c$ 4) $x^{3} + 4\arcsin x + c$
8.	$\int_{0}^{2} x^2 dx$ Вычислить:	$\frac{8}{1}, \frac{8}{3}, \frac{-8}{3}$ 3) 4 4) 8
9.	Вычислить площадь фигуры, ограниченной линиями: $y = 2x$; $x = 0$; $y = 0$; $x = 1$	1) 1 2) $\frac{1}{2}$ 3) 2 4) $\frac{3}{2}$
10.		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	Вычислить площадь фигуры, изображенной на рис.	

Второй уровень. При выполнении заданий второго уровня необходимо переписать условие, записать

полное решение и в бланке ответов указать цифру, которая обозначает выбранный Вами ответ.

	$(a + b)^4$	1
11.	Найдите интеграл: $\int (2x + 1)^4 dx$	
		$\begin{vmatrix} \frac{1}{2}(2x+1)^5 + c \\ 1) & \frac{1}{2}(2x+1)^5 + c \\ 3) & \frac{1}{10}(2x+1)^5 + c \\ 4) & 8(2x+1)^5 + c \end{vmatrix}$
12.	$ \int \left(\cos 5x + \ell^{3x} - \frac{1}{\cos^2 3x}\right) dx $ Найдите интеграл:	$\frac{1}{5}\sin 5x + \frac{1}{3}\ell^{3x} - \frac{1}{3}tg3x + c$
		$2) \sin 5x + \ell^{3x} - tg3x + c$
		$\int_{3}^{1} \frac{1}{5} \sin 5x + \frac{1}{3} \ell^{3x} - tg 3x + c$
		4) $\sin 5x + \frac{1}{3}\ell^{3x} - tg3x + c$
13.	$\int_{0}^{1} (3x-1)^{4} dx$ Вычислить: 0	$\begin{pmatrix} \frac{2}{3} & \frac{33}{15} \end{pmatrix}$
		$\frac{31}{15}$ $\frac{11}{5}$
	Вычислить площадь фигуры, ограниченной	$\begin{pmatrix} \frac{3}{4} & \frac{4}{3} \\ 1 & 2 \end{pmatrix}$
	$_{\text{ЛИНИЯМИ}} y = x^2 y = 4x - 3$	
		(3) $2\frac{2}{3}$ (4) $4\frac{1}{3}$
	Вычислить площадь фигуры, изображенной на рис.	1) 36
	9	2) 18
	$y = 9 - x^2$	3) 9
	-3	4) 27

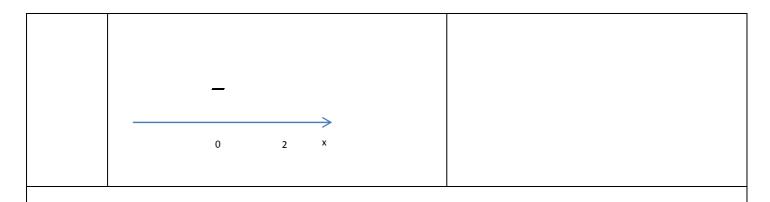
Вариант – 2 Первый уровень. При выполнении заданий первого уровня в бланке ответов

укажите цифру, которая обозначает выбранный Вами ответ.

1.	Вставьте пропущенные слова: функция $F(x)$ называется первообразной функции на некотором промежутке, если для всех из эт промежутка = $F(x)$	гого
2.	Укажите первообразную функции $f(x) = 3 - \cos x$	1) $F(x) = x^3 - \sin x$ 2) $F(x) = -\sin x$ 3) $F(x) = 3x - \sin x$ 4) $F(x) = 3x + \sin x$
3.	Найдите интеграл: $\int x^4 dx$	1) $x^{5} + c$ 2) $4x^{4} + c$ 3) $4x^{3} + c$ 4) $\frac{1}{5}x^{5} + c$
4.	Найдите интеграл: $\int 16x^3 dx$	1) $16x^{2} + c$ 2) $48x + c$ 3) $48x^{2} + c$ 4) $4x^{4} + c$
5.	Найдите интеграл: $\int (6x^2 - 2)dx$	1) $2x^3 + c$ 2) $12x^3 - 2x + c$ 3) $2x^3 - 2x + c$ 4) $6x^3 - 2x + c$
6.	Скорость прямолинейного движения точки изменяется по закону $V(t) = 3t^2 - 2t$	1) $S(t) = t^3 - t^2 + c$ 2) $S(t) = 3t^3 - t^2 + c$ $S(t) = \frac{t^3}{3} - t^2 + c$ 3) $S(t) = t^3 - t^2$
7.	Найдите интеграл: $\int \left(x^2 - \sin x + \frac{1}{\sqrt{1 - x^2}}\right) dx$	$\frac{x^3}{3} + \cos x + \arcsin x + c$ 2) $x^3 + \cos x + \arcsin x + c$ 3) $2x^3 - \cos x + \arcsin x + c$

		4) $x^3 - \cos x + \arcsin x + c$
8.	$\int_{0}^{1} x \ dx$ Вычислить:	1) $\frac{1}{2}$ 2) 1
		$3) -1$ $4) -\frac{1}{2}$
9.	Вычислить площадь фигуры, ограниченной линиями: $y = x^2$; $x = 1$; $x = 3$; $y = 0$	$\frac{2}{1)8^{\frac{2}{3}}}$ 2)8
		3) -7 4) 5
10.	Вычислить площадь фигуры, изображенной на рис.	1) 8 2) 16 3) 20 4) 4
Drana ž vy	Дерень. При выполнении запаний первого уровня	

Второй уровень. При выполнении заданий первого уровня в бланке ответов укажите цифру, которая обозначает выбранный Вами ответ.


11.	Найдите интеграл: $\int (3x^2 - 4)^3 dx$	$ \frac{1}{3}(3x-4)^4 + c \frac{1}{12}(3x-4)^4 + c $
		3) $\frac{1}{4}(3x-4)^4+c$ 4) $9(3x-4)^2+c$
12.		$\frac{1}{1} \int_{0}^{1} e^{4x} + \frac{1}{3} tg 3x + x + c$
		$2) \ell^{4x} + tg3x + 1 + c$
		3) $4\ell^{4x} + 3tg3x + 1$

		$4) \frac{1}{4} \ell^{4x} + \frac{1}{3} tg 3x + x + c$
13.	$\int_{0}^{1} (2x+3)^{3} dx$ Вычислить: 0	1) $88^{\frac{1}{4}}$ 2) 68
		$\frac{625}{8}$ 4) 1
14.	Найдите площадь фигуры, ограниченной	$\frac{2}{1)10^{\frac{2}{3}}}$ 2) 11 $\frac{1}{3}$
	линиями: $y = x^2$ $y = 2x + 3$	1) $10^{\overline{3}}$ 2) $11^{\overline{3}}$
		1
		3) 3 4) $10^{\overline{3}}$
15.	Вычислить площадь фигуры, изображенной на	$\frac{32}{1)^{\frac{32}{3}}}$ 2) 10 $\frac{1}{3}$
	рис.	1) $\frac{3}{3}$ 2) $10^{\frac{3}{3}}$
	$y = 4 - x^2$	33 1
	9	$\begin{pmatrix} \frac{33}{3} & \frac{1}{3} \\ 3) & \frac{1}{3} \end{pmatrix}$
	-2 ×	

Вариант – 3 Первый уровень. При выполнении заданий первого уровня в бланке ответов укажите цифру, которая обозначает выбранный Вами ответ.

1.	Вставьте пропущенные слова: совокупность $F(x)+c$ всех функций $f(x)$ на интервале называют и обозначают	
2.	Укажите первообразную функции $f(x) = x + \cos x$	$F(x) = \frac{x^2}{2} + \sin x F(x) = \frac{x^2}{2} - \sin x$ $F(x) = x^2 + \cos x F(x) = 3 - \cos x$

		<u> </u>
3.	Найдите интеграл: $\int x^4 dx$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
		$3) \frac{1}{6}x^6 + c $ 4) $x^6 + c$
4.	Найдите интеграл: $\int 10x^4dx$	1) $5x^6 + c$ 2) $5x^4 + c$
		3) $40x^3 + c$ 4) $14x^3 + c$
5.	Найдите интеграл: $\int (5x^2 - 2)dx$	1) $\frac{5}{3}x^3 - 2x + c$ 2) $5x^3 - 2 + c$
		$\begin{array}{ c c c }\hline & \frac{5}{3}x^3 - 2 + c \\ & 3) & \frac{5}{6}x^3 - 2x \end{array}$
6.	Скорость прямолинейного движения точки изменяется по закону $V(t) = 3t^2 + 2t$	1) $S(t) = t^3 + t^2 + c$
	Найдите закон движения	$2) S(t) = 3t^3 + t^2 + c$
		1) $S(t) = t + t^{2} + c$ 2) $S(t) = 3t^{3} + t^{2} + c$ 3) $S(t) = \frac{t^{3}}{3} - t^{2} + c$ 4) $S(t) = t^{3} + t^{2}$
		4) $S(t) = t^3 + t^2$
7.	Найлите интеграл: $\int \left(8x^2 - \frac{3}{1+x^2}\right) dx$	1) $8x - 3\arcsin x + c$
	Найдите интеграл: $^{1+x}$)	$2) x^3 + 3 \arcsin x + c$
		$3) 2x^4 - 3\arcsin x + c$
		4) $24x^2 + 3 \arcsin x + c$
8.	$\int_{0}^{3} dx$	1) 2 2) -2
	Вычислить: 1	3) 4 4) -4
9.	Вычислить площадь фигуры, ограниченной линиями: $y = 2x^2$, $y = 0$, $x = 2$,	$\frac{1}{1)5^{\frac{1}{3}}}$ 2) 8
	липилии. · , , , ,	
		$\frac{8}{3}$ 3) 16 4) $\frac{8}{3}$
10.	Вычислить площадь фигуры, изображенной на рис.	1) $\frac{9}{2}$ 2) 3
		$\frac{3}{2}$ 4) 21

Второй уровень. При выполнении заданий первого уровня в бланке ответов укажите цифру, которая обозначает выбранный Вами ответ.

1.	Найдите интеграл: $\int \sqrt{2x+4dx}$	1) $\frac{1}{3}\sqrt{(2x+4)^3+c}$ 2) $\frac{3}{4}\sqrt{(2x+4)^3+c}$ 3) $\sqrt{(2x+4)^3+c}$ 4) $\frac{1}{3}\sqrt{(2x+4)^3+c}$
2.	Найдите интеграл: $\int (\sin 3x + \ell^{4x} + \frac{1}{\sin^2 4x}) dx$	$ \frac{1}{3}\cos 3x + \frac{1}{4}\ell^{4x} - \frac{1}{4}\operatorname{ctg}4x + c $ $ 2) \cos 3x - \ell^{4x} - \operatorname{ctg}4x + c $ $ \cos 3x - \ell^{4x} - \frac{1}{4}\operatorname{ctg}4x + c $ $ 4) \cos 3x - 4\ell^{4x} + \operatorname{ctg}4x + c $
3.	$\int_{0}^{1} (2-3x)^5 dx$ Вычислить:	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
4.	Вычислить площадь фигуры, ограниченной линиями: $y = x^2$ $y = x + 2$	1) $4^{\frac{1}{2}}$ 2) $3^{\frac{1}{2}}$

		$\frac{1}{3}$ 3)10 $\frac{1}{3}$	$\frac{2}{4)4}$ $\frac{3}{3}$
5.	Вычислить площадь фигуры, изображенной на рис. $y = 1 - x^2$	$\frac{4}{3}$ 1) $\frac{1}{3}$ 3) $\frac{1}{3}$	$ \begin{array}{c} \frac{2}{3} \\ \frac{5}{3} \\ 4) \\ \hline 3 \end{array} $

Вариант – 4

Первый уровень. При выполнении заданий первого уровня в бланке ответов укажите цифру, которая обозначает выбранный Вами ответ.

1.	Вставьте пропущенные слова: функция $F(x)$ называетсяфункции $f(x)$ на некотором промежутке если для всех x, из этого промежутка $F'(x) =$	
2.	Укажите первообразную функции $f(x) = 4x^3 + \sin x$	1) $x^4 - \cos x$ 2) $4x^4 + \cos x$ 3) $12x^2 - \cos x$ 4) $12x^2 + \sin x$
3.	Найдите интеграл: $\int x^7 dx$	$\frac{1}{8}x^{8} + c$ 1) $8x^{8} + c$ 2) $8x^{8} + c$ 3) $7x^{6} + c$ 4) $7x^{8} + c$
4.	Найдите интеграл: $\int 8x^3 dx$	1) $24x^4 + c$ 2) $2x^4 + c$ 3) $-2x^4 + c$ 4) $x^4 + c$
5.	Найдите интеграл: $\int (2x^2 - 4)dx$	1) $2x^3 - 4 + c$ 2) $2x^3 - 4x + c$ 2) $\frac{2}{3}x^3 - 4x + c$ 4) $\frac{2}{3}x^3 - 4x$
6.	Скорость точки, движущейся прямолинейно	1) S(t) = 2t - 6

	$V = t^2 - 6t + 2\left(\frac{\mathit{M}}{\mathit{c}}\right)$ задана уравнением Найдите закон движения	$S(t) = \frac{t^3}{3} - 3t^2 + 2t^2 + c$ $S(t) = 3\frac{t^3}{3} - 3t^2 + 2t + c$ $S(t) = \frac{t^3}{3} - 3t^2 + 2t$ $4)$
7.		$S(t) = \frac{1}{3} - 3t^2 + 2t$ 1) $3x^3 + \sin x + arcerc + c$
	Найдите интеграл: $\int \left(3x^2 - \cos + \frac{1}{1+x^2}\right) dx$	1) $3x^{2} + \sin x + arctex + c$ 2) $x^{3} - \sin x + arctgx + c$ 3) $6x - \sin x + arctgx + c$ 4) $3x^{3} + \sin x + arctgx$
8.		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
9.	Найти площадь фигуры, ограниченной линиями: $y = 4x + 2$; $x = 1$; $x = 2$; $y=0$	1) 8 2) 6 3) 4 4) 3
10.	Вычислить площадь фигуры, изображенной на рис.	1) 12 2) 8 3) 16 4) 4

Практическая работа № 8 «Выпуклость графика функции, точки перегиба»

Вариант 1

Найти интервалы выпуклости и вогнутости и точки перегиба:

1)
$$y = x^3 - 3x + 2$$
;

2)
$$y = x^4 - 2x^2 + 1$$
;

3)
$$y = x^3 - 12x + 4$$

Контрольные вопросы:

- а) что такое интервалы выпуклости и вогнутости функции?
- б) достаточное условии существования точки перегиба?
- в) вспомнить алгоритм исследования функции на точки перегиба?

Вариант 2

Найти интервалы выпуклости и вогнутости и точки перегиба:

1)
$$y = x^3 + 6x^2 - 15x + 8$$
;

2)
$$y = -x^4 + 8x^2 - 7$$
;

3)
$$y=(x+1)^2(x-2)$$

Контрольные вопросы:

- а) что такое интервалы выпуклости и вогнутости функции?
- б) достаточное условии существования точки перегиба?
- в) вспомнить алгоритм исследования функции на точки перегиба?

Время выполнения:

Повторение теоретического материала -12 минут, решение по образцу -18 минут, самостоятельное выполнение заданий -60 минут.

Критерии оценки выполнения практических работ

«5»-Работа должна быть выполнена правильно и в полном объёме, 90-100% выполнения.

«4»-Работа выполнена правильно, но имеются недочеты, процент выполнения 75-89%.

«3»- Работа выполнена правильно, но имеются ошибки, процент выполнения 50-74%.

Практическая работа № 9 «Построение графиков функций»

Тема: «Исследование функции и построение ее графика с помощью производной».

Вариант 1

Исследовать функцию с помощью производной и построить ее график:

1)
$$y = x^3 - 3x^2 + 4$$

$$2) y = -x^4 - 8x^2 - 16$$

3)
$$y = -x^3 + 3x + 2$$

Вариант 2

Исследовать функцию с помощью производной и построить ее график:

1)
$$y = -x^3 + 4x^2 - 4x$$

$$y = \frac{1}{4}x^4 - \frac{1}{24}x^6$$

3)
$$y = x^4 - 2x^2 + 2$$

Время выполнения:

Повторение теоретического материала -12 минут, решение по образцу -18 минут, самостоятельное выполнение заданий -60 минут.

Критерии оценки выполнения практических работ

«5»-Работа должна быть выполнена правильно и в полном объёме, 90-100% выполнения.

«4»-Работа выполнена правильно, но имеются недочеты, процент выполнения 75-89%.

«3»- Работа выполнена правильно, но имеются ошибки, процент выполнения 50-74%.

Практическая работа № 10 «Таблица неопределённых интегралов. Непосредственное интегрирование»

Вариант 1

Вычислить интеграл:

$$1) \int \frac{1}{2} \cos \left(2x + \frac{\pi}{4}\right) dx ;$$

$$2)^{\int e^{2x+4}dx};$$

$$3) \int 3\sin\left(2x - \frac{\pi}{3}\right) dx;$$

$$4) \int \left(-\frac{3}{x} + e^{5x} - \cos 10x\right) dx$$

Контрольные вопросы

а) сколько первообразных может быть у одной функции? Как называется это свойство?

б) вычислить:
$$\int \left(x^2 + 3e^x - 6x + \frac{1}{4}\cos x\right) dx$$

Вариант 2

Вычислить интеграл:

$$\int_{3}^{1} \sin\left(4x - \frac{\pi}{6}\right) dx$$

2)
$$\int (5x+8)^3 dx$$
;

3)
$$\int 6\cos\left(\frac{1}{3}x + \frac{\pi}{3}\right) dx$$

$$4) \int \left(-\frac{2}{x} + e^{6x-1} - \sin 3x\right) dx$$

Контрольные вопросы

а) сколько первообразных может быть у одной функции? Как называется это свойство?

б) вычислить:
$$\int \left(4x^5 + 7 - 6x^4 + \frac{1}{5}\sin x\right) dx$$

Время выполнения:

Повторение теоретического материала -12 минут, решение по образцу -18 минут, самостоятельное выполнение заданий -60 минут.

Критерии оценки выполнения практических работ

«5»-Работа должна быть выполнена правильно и в полном объёме, 90-100% выполнения.

«4»-Работа выполнена правильно, но имеются недочеты, процент выполнения 75-89%.

«3»- Работа выполнена правильно, но имеются ошибки, процент выполнения 50-74%.

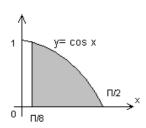
Практическая работа № 11 «Определённый интеграл и его геометрический смысл. Формула Ньютона-Лейбница»

Вариант 1.

1. Запишите с помощью интеграла площадь фигуры, изображенной на рисунке:

2. Вычислить определенные интегралы, пользуясь формулой Ньютона-Лейбница:

$$\int_0^{\frac{\pi}{2}} \cos x \ dx$$


2.
$$\int_{-3}^{5} dx$$

$$\int_{-1}^{3} \frac{dx}{x+2}$$

$$\int_0^1 (4+x)dx$$

Вариант 2.

1.Запишите с помощью интеграла площади фигуры, изображенной на рисунке:

2. Вычислить определенные интегралы, пользуясь формулой Ньютона-Лейбница:

$$\int_0^{\frac{\pi}{2}} \sin x \ dx$$

$$\int_{1}^{2} x \, dx$$

$$\int_0^1 \frac{dx}{x+1}$$

Время выполнения:

Повторение теоретического материала — 12 минут, решение по образцу — 18 минут, самостоятельное выполнение заданий — 60 минут.

Критерии оценки выполнения практических работ

«5»-Работа должна быть выполнена правильно и в полном объёме , 90-100% выполнения.

«4»-Работа выполнена правильно, но имеются недочеты, процент выполнения 75-

Практическая работа № 12 «Вычисление определённых интегралов»

Вариант 1

1. Вычислить определенный интеграл:

$$\int_{-1}^{0} \frac{\left(x^{2} - 2x\right)\left(3 - 2x\right)}{x - 2} dx \qquad \qquad \int_{1}^{2} \frac{x^{2} - 3x - 10}{x + 2} dx$$

$$\int_{0}^{3} e^{-\frac{x}{3}} dx \quad 3) \quad \int_{-1}^{1} \frac{(x^{2} - 3x)(4 - 3x)}{x - 3} dx \quad 4)$$

Вариант 2

1. Вычислить определенный интеграл:

$$\int_{2}^{3} \frac{(x^{2} - 3x + 2)(2 + x)}{x - 1} dx$$

$$(2) \int_{0}^{1} \frac{x^{2} - 4x}{x - 2} dx$$

3)
$$\int_{0}^{4} e^{-\frac{x}{4}} dx$$
 4)
$$\int_{-1}^{1} \frac{x^{2} - 6x}{x - 6} dx$$

Время выполнения:

Повторение теоретического материала -12 минут, решение по образцу -18 минут, самостоятельное выполнение заданий -60 минут.

Критерии оценки выполнения практических работ

«5»-Работа должна быть выполнена правильно и в полном объёме, 90-100% выполнения.

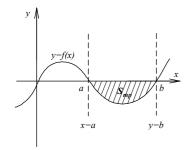
«4»-Работа выполнена правильно, но имеются недочеты, процент выполнения 75-89%.

«3»- Работа выполнена правильно, но имеются ошибки, процент выполнения 50-74%.

Практическая работа № 13 «Приложение определённого интеграла к вычислению площадей плоских фигур»

Вариант 1

1. Вычислить площадь фигуры, ограниченной линиями:


1)
$$y = x^2$$
, $y = 0$, $x = 4$;

2)
$$y = x^3 + 2$$
, $y = 0$, $x = 0$, $x = 2$;

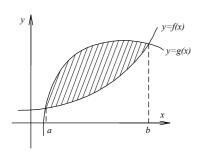
3)
$$y = \sin x$$
, $y = 0$, $x = \frac{\pi}{2}$;

Контрольные вопросы:

- а) что такое криволинейная трапеция?
- б) записать формулы для вычисления криволинейных трапеций следующего вида:

Вариант 2

1. Вычислить площадь фигуры, ограниченной линиями:


1)
$$y = x^2$$
, $y = 0$, $x = -3$;

2)
$$y = x^3$$
, $y = 0$, $x - 3$, $x = 1$;

3)
$$y = \cos x$$
, $y = 0$, $x = -\frac{\pi}{4}$, $x = \frac{\pi}{4}$.

Контрольные вопросы:

- а) что такое криволинейная трапеция?
- б) записать формулы для вычисления криволинейных трапеций следующего вида:

Время выполнения:

Повторение теоретического материала -12 минут, решение по образцу -18 минут, самостоятельное выполнение заданий -60 минут.

Критерии оценки выполнения практических работ

«5»-Работа должна быть выполнена правильно и в полном объёме, 90-100% выполнения.

«4»-Работа выполнена правильно, но имеются недочеты, процент выполнения 75-89%.

«3»- Работа выполнена правильно, но имеются ошибки, процент выполнения 50-74%.

Самостоятельная работа №20 «Экстремумы функции»

Вариант 1

- 1.Записать общую схему исследования функции для построения графиков:
- 1) найти область определения;
- 2) определить свойства функции и точки пересечения с осями координат, если можно;
- 3) исследовать на монотонность и составить схему;
- 4) определить экстремумы и значение функции в них;
- 5) найти дополнительно несколько точек;
- 6) построить график функции.
- 2.Используя данные о производной у', приведенные в таблице, ответить на вопросы:
- а) промежутки возрастания;
- б) промежутки убывания;
- в) точки максимума;
- г) точки минимума.

x	(-∞;- 5)	5	(-5;- 2)	-2	(-2;8)	8	(8;+∞)
<i>y'</i>	+	0	-	0	+	0	+

3. Используя вышеизложенную схему, исследовать и построить график функции:

1)
$$y = x^3 - 3x + 2$$
;

2)
$$y = x^4 - 2x^2 + 1$$
.

Контрольные вопросы

- а) что такое интервалы монотонности?
- б) что такое max и min для функции?
- в) вспомнить алгоритм исследования функции на экстремумы.

Вариант 2

- 1.Записать общую схему исследования функции для построения графиков:
- 1) найти область определения;
- 2) определить свойства функции и точки пересечения с осями координат, если можно;
- 3) исследовать на монотонность и составить схему;
- 4) определить экстремумы и значение функции в них;
- 5) найти дополнительно несколько точек;
- 6) построить график функции.
- 2. Используя данные о производной у', приведенные в таблице, ответить на вопросы:
- а) промежутки возрастания;
- б) промежутки убывания;
- в) точки максимума;
- г) точки минимума.

x	(- ∞;2)	2	(2;3)	3	(3;+∞)
<i>y'</i>	+	0	-	0	+

- 3. Используя вышеизложенную схему, исследовать и построить график функции:
- 1) $y = x^3 + 6x^2 15x + 8$;
- 2) $y = -x^4 + 8x^2 7$

Контрольные вопросы

- а) что такое интервалы монотонности?
- б) что такое так и тіп для функции?
- в) вспомнить алгоритм исследования функции на экстремумы.

Критерии оценки выполнения практических работ

«5»-Работа должна быть выполнена правильно и в полном объёме, 90-100% выполнения.

«4»-Работа выполнена правильно, но имеются недочеты, процент выполнения 75-89%.

«3»- Работа выполнена правильно, но имеются ошибки, процент выполнения 50-74%.

Самостоятельная работа №21 «Выпуклость графика функции, точки перегиба»

Вариант 1

Найти интервалы выпуклости и вогнутости и точки перегиба:

- 1) $y = x^3 3x + 2$;
- 2) $y = x^4 2x^2 + 1$;
- 3) $y = x^3 12x + 4$

Контрольные вопросы:

- а) что такое интервалы выпуклости и вогнутости функции?
- б) достаточное условии существования точки перегиба?
- в) вспомнить алгоритм исследования функции на точки перегиба?

Вариант 2

Найти интервалы выпуклости и вогнутости и точки перегиба:

- 1) $y = x^3 + 6x^2 15x + 8$;
- 2) $y = -x^4 + 8x^2 7$;
- 3) $y=(x+1)^2(x-2)$

Контрольные вопросы:

- а) что такое интервалы выпуклости и вогнутости функции?
- б) достаточное условии существования точки перегиба?
- в) вспомнить алгоритм исследования функции на точки перегиба?

Критерии оценки выполнения практических работ

«5»-Работа должна быть выполнена правильно и в полном объёме, 90-100% выполнения.

«4»-Работа выполнена правильно, но имеются недочеты, процент выполнения 75-89%.

«3»- Работа выполнена правильно, но имеются ошибки, процент выполнения 50-74%.

Самостоятельная работа №22 «Наибольшее и наименьшее значения функции»

Вариант 1

- 1) Найти наименьшее значение функции $y = x^3 15x^2 + 19$ на отрезке [5; 15]
- 2) Найти наименьшее значение функции $y = \frac{x^2 + 900}{x}$ на отрезке [3; 40]
- 3) Найти наименьшее значение функции $y = (x 3)^2(x 6) 1$ на отрезке [4; 6]
- 4) Найти наибольшее значение функции $y = \ln(x+9)^9 9x$ на отрезке [-3,5; 0]

Вариант 2

- 1) Найти наибольшее значение функции $y = 12\sqrt{2}\cos x + 12x 3\pi + 9$ на отрезке $\left[0; \frac{\pi}{2}\right]$
- 2) Найти наименьшее значение функции $y = -4x + 2tgx + \pi + 16$ на отрезке $\left[-\frac{\pi}{3}; \frac{\pi}{3} \right]$
- 3) Найти наибольшее значение функции $y = 9\cos x + 15x 4$ на отрезке $\left[-\frac{3\pi}{2}; 0\right]$
- 4) Найти наименьшее значение функции $y = e^{2x} 11e^x 1$ на отрезке [-1;2]

Критерии оценки выполнения практических работ

«5»-Работа должна быть выполнена правильно и в полном объёме, 90-100% выполнения. «4»-Работа выполнена правильно, но имеются недочеты, процент выполнения 75-89%. «3»- Работа выполнена правильно, но имеются ошибки, процент выполнения 50-74%.

Самостоятельная работа №23 «Построение графика функций с помощью производной»

Вариант 1

Исследовать функцию с помощью производной и построить ее график:

1)
$$y = x^3 - 3x^2 + 4$$

$$2) y = -x^4 - 8x^2 - 16$$

3)
$$y = -x^3 + 3x + 2$$

Вариант 2

Исследовать функцию с помощью производной и построить ее график:

1)
$$y = -x^3 + 4x^2 - 4x$$

$$y = \frac{1}{4}x^4 - \frac{1}{24}x^6$$

3)
$$y = x^4 - 2x^2 + 2$$

Критерии оценки выполнения практических работ

«5»-Работа должна быть выполнена правильно и в полном объёме, 90-100% выполнения.

«4»-Работа выполнена правильно, но имеются недочеты, процент выполнения 75-89%.

«3»- Работа выполнена правильно, но имеются ошибки, процент выполнения 50-74%.

Самостоятельная работа №24 «Неопределённый интеграл. Основные свойства неопределённого интеграла»

Вариант 1

Найти неопределенный интеграл:

1)
$$\int 4\sin x dx$$
; 2) $\int 6\cos x dx$;

3)
$$\int \left(-\frac{9}{\cos^2 x}\right) dx ; (4) \int \left(-\frac{15}{x^2}\right) dx ;$$

5)
$$\int \left(x^6 + \frac{1}{\cos^2 x}\right) dx$$
; (6) $\int \left(x^2 + 6x\right) dx$;

Контрольные вопросы

- а) что такое неопределенный интеграл?
- б) как проверить результаты интегрирования?

Вариант 2

Найти неопределенный интеграл:

1)
$$\int 5\sin x dx$$
; 2) $\int 8\cos x dx$;

$$\int \left(-\frac{16}{\sin^2 x}\right) dx \, ;4) \int \frac{20}{x^2} dx$$

$$\int \left(x^7 - \frac{1}{\sin^2 x}\right) dx = \int (8x - 4x^3) dx$$

Контрольные вопросы

- а) что такое неопределенный интеграл?
- б) как проверить результаты интегрирования?

Критерии оценки выполнения практических работ

- «5»-Работа должна быть выполнена правильно и в полном объёме, 90-100% выполнения.
- «4»-Работа выполнена правильно, но имеются недочеты, процент выполнения 75-89%.
- «3»- Работа выполнена правильно, но имеются ошибки, процент выполнения 50-74%.

Самостоятельная работа №25 «Таблица неопределённых интегралов. Непосредственное интегрирование»

Вариант 1

Вычислить интеграл:

$$\int \frac{1}{2} \cos \left(2x + \frac{\pi}{4}\right) dx$$

2)
$$\int e^{2x+4} dx$$
;

$$3) \int 3\sin\left(2x - \frac{\pi}{3}\right) dx;$$

$$4) \int \left(-\frac{3}{x} + e^{5x} - \cos 10x\right) dx;$$

Контрольные вопросы

- а) сколько первообразных может быть у одной функции? Как называется это свойство?
- $\int \left(x^2 + 3e^x 6x + \frac{1}{4}\cos x\right) dx$ б) вычислить:

Вариант 2

Вычислить интеграл:

$$\int_{3}^{1} \sin\left(4x - \frac{\pi}{6}\right) dx$$

2)
$$\int (5x+8)^3 dx$$
;

$$3) \int 6\cos\left(\frac{1}{3}x + \frac{\pi}{3}\right) dx$$

$$4) \int \left(-\frac{2}{x} + e^{6x-1} - \sin 3x\right) dx$$

Контрольные вопросы

а) сколько первообразных может быть у одной функции? Как называется это свойство?

б) вычислить:
$$\int \left(4x^5 + 7 - 6x^4 + \frac{1}{5}\sin x\right) dx$$

Критерии оценки выполнения практических работ

«5»-Работа должна быть выполнена правильно и в полном объёме, 90-100% выполнения.

«4»-Работа выполнена правильно, но имеются недочеты, процент выполнения 75-89%.

«3»- Работа выполнена правильно, но имеются ошибки, процент выполнения 50-74%.

Самостоятельная работа №26 ««Определённый интеграл. Основные свойства определённого интеграла. Формула Ньютона-Лейбница»

Вариант 1.

Вычислить определенные интегралы, пользуясь формулой Ньютона-Лейбница:

$$\int_0^{\frac{\pi}{2}} \cos x \ dx$$

$$\int_{-3}^{5} dx$$

6.
$$\int_{-1}^{3} \frac{dx}{x+2}$$

$$\int_0^1 (4+x)dx$$

Вариант 2.

Вычислить определенные интегралы, пользуясь формулой Ньютона-Лейбница:

$$\int_{0}^{\frac{\pi}{2}} \sin x \ dx$$

$$\int_{1}^{2} x \, dx$$

$$\int_0^1 \frac{dx}{x+1}$$

$$\begin{array}{ccc}
3 & \int_0^1 \frac{dx}{x+1} \\
4 & \int_0^1 (5-x) dx
\end{array}$$

Критерии оценки выполнения практических работ

«5»-Работа должна быть выполнена правильно и в полном объёме, 90-100% выполнения. «4»-Работа выполнена правильно, но имеются недочеты, процент выполнения 75-89%. «3»- Работа выполнена правильно, но имеются ошибки, процент выполнения 50-74%.

Самостоятельная работа №27 «Вычисление определённых интегралов»

Вариант 1

Вычислить определенный интеграл:

$$\int_{0}^{1} e^{2x} dx \qquad \qquad 4 \int_{1}^{2} \frac{dx}{1 - 2x} \, ;$$

$$\int_{0}^{\pi/2} \sin^2 2x dx \int_{0}^{\pi/2} \sin x dx$$
5) 0 ; 6) 0 ;

$$\int_{-1}^{0} \frac{\left(x^2 - 2x\right)(3 - 2x)}{x - 2} dx \qquad \qquad \begin{cases} \int_{0}^{1} \frac{x^2 - 4x}{x - 2} dx \\ 0 \end{cases}$$

Вариант 2

Вычислить определенный интеграл:

1)
$$\int_{1}^{2} x^{2} dx$$
 2) $\int_{1}^{2} x^{3} dx$

3)
$$\int_{0}^{\frac{\pi}{4}} \sin 2x dx$$
 3 ; 4)
$$\int_{1}^{\sqrt{3}} \frac{dx}{1+x^{2}}$$
 ;

$$\int_{0}^{1} \frac{dx}{1+x^{2}}; \qquad \int_{0}^{1} e^{3x} dx; \qquad 6)$$

$$\int_{2}^{3} \frac{(x^{2} - 3x + 2)(2 + x)}{x - 1} dx \qquad \int_{2}^{2} \frac{x^{2} - 3x - 10}{x + 2} dx$$

Критерии оценки выполнения практических работ

«5»-Работа должна быть выполнена правильно и в полном объёме, 90-100% выполнения. «4»-Работа выполнена правильно, но имеются недочеты, процент выполнения 75-89%. «3»- Работа выполнена правильно, но имеются ошибки, процент выполнения 50-74%.

Самостоятельная работа №28, 29 «Приложение определённого интеграла к вычислению площадей плоских фигур»

плоских фигур»

Вариант 1

1.Вычислить площадь фигуры, ограниченной линиями:

1)
$$y = x^2$$
, $y = 0$, $x = 5$;

2)
$$y = x^3 + 2$$
, $y = 0$, $x = 0$, $x = 3$;

3)
$$y = \sin x$$
, $y = 0$, $x = \frac{\pi}{2}$;

Контрольные вопрос:

Что такое криволинейная трапеция?

Вариант 2

1.Вычислить площадь фигуры, ограниченной линиями:

1)
$$y = x^2$$
, $y = 0$, $x = -4$;

2)
$$y = x^3$$
, $y = 0$, $x = 5$, $x = 1$;

3)
$$y = \cos x$$
, $y = 0$, $x = -\frac{\pi}{4}$, $x = \frac{\pi}{4}$.

Контрольные вопрос:

Что такое криволинейная трапеция?

Критерии оценки выполнения практических работ

- «5»-Работа должна быть выполнена правильно и в полном объёме, 90-100% выполнения.
- «4»-Работа выполнена правильно, но имеются недочеты, процент выполнения 75-89%.
- «3»- Работа выполнена правильно, но имеются ошибки, процент выполнения 50-74%.

Тест «Основные понятия и теоремы теории вероятностей»

Вариант 1.

- 1. Локальная и интегральная теоремы Лапласа. Вероятность отклонения относительной частоты от постоянной вероятности.
- 2. Верно ли, что $P_n(k) = C_k^n p^n q^{k-n}$. Почему?
- 3. В чем состоит отличие между вероятностью и относительной частотой?
- 4. Вероятность какого события равна нулю?
- 5. Перестановками называют ...

Вариант 2.

- 1. Повторение испытаний. Формула Бернулли. Наивероятнейшее число наступлений события.
- 2. Верно ли, что $P_n(k_1 \le k \le k_2) \approx \Phi(k_2) \Phi(k_1)$. Почему?
- 3. Относительной частотой события называют ...
- 4. Сочетаниями называют ...
- 5. Равновозможными называют события ...

Тест «Случайные величины»

Вариант 1.

- 1. Случайной величиной называется ...
- 2. Чему равны числовые характеристики непрерывной *CB*?
- 3. Какими свойствами обладает функция распределения вероятностей *CB*?
- 4. Какое распределение называется

Вариант 2.

- 1. Законом распределения дискретной *CB* называется ...
- 2. Что такое числовые характеристики CB?
- 3. Какими свойствами обладает математическое ожидание *CB*?

4. Чему равны f(x) и F(x) показательного распределения?

- 1. В урне 4 белых и 6 чёрных шаров. Из урны вынимают 2 шара. Найти вероятность того, что вынутые шары разных цветов.
- 2. В ящике 10 деталей, из которых 4 окрашенных. Сборщик наудачу взял три детали. Найти вероятность того, что среди них хотя бы одна деталь окрашена.
- 3. Сборщик получил три ящика деталей. В первом ящике 40 деталей, из них 20 высшего сорта, во втором 50 деталей, из них 10 высшего сорта, а в третьем 30 деталей, из них 12 высшего сорта. Из наудачу взятого ящика извлечена деталь высшего сорта. Определить вероятность того, что эта деталь извлечена из первого ящика.
- 4. Требуется найти вероятность того, что в 4 независимых испытаниях событие появится менее 3 раз, зная, что в каждом испытании вероятность появления события равна 0,6.
- 5. 300 станков работают независимо друг от друга, причём вероятность бесперебойной работы каждого из них в течение смены равна 0,8. Найти вероятность того, что в течение смены бесперебойно проработают: a) 250 станков; б) от 230 до 250 станков.
- 6. Завод отправил на базу 1000 доброкачественных изделий. Вероятность повреждения каждого изделия при транспортировке равна 0,0005. Найти вероятность повреждения при транспортировке: а) двух изделий; б) от 3 до 5 изделий.

- 4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующие этапы формирования компетенций.
- 4.1 Критерии оценки знаний студентов на экзамене (дифференцированном зачете)

Оценки "отлично" заслуживает студент, обнаруживший всестороннее, систематическое и глубокое знание учебно-программного материала, умение свободно выполнять задания, предусмотренные программой, усвоивший основную и знакомый с дополнительной литературой, рекомендованной программой. Как правило, оценка "отлично" выставляется студентам, усвоившим взаимосвязь основных понятий дисциплины в их значении для приобретаемой профессии, проявившим творческие способности в понимании, изложении и использовании учебно-программного материала.

Оценки "хорошо" заслуживает студент, обнаруживший полное знание учебнопрограммного материала, успешно выполняющий предусмотренные в программе задания, усвоивший основную литературу, рекомендованную в программе. Как правило, оценка "хорошо" выставляется студентам, показавшим систематический характер знаний по дисциплине и способным к их самостоятельному пополнению и обновлению в ходе дальнейшей учебной работы и профессиональной деятельности.

Оценки "удовлетворительно" заслуживает студент, обнаруживший знания основного учебно-программного материала в объеме, необходимом для дальнейшей учебы и предстоящей работы по специальности, справляющийся с выполнением заданий, предусмотренных программой, знакомый с основной литературой, рекомендованной программой. Как правило, оценка "удовлетворительно" выставляется студентам, допустившим погрешности в ответе на экзамене и при выполнении экзаменационных заданий, но обладающим необходимыми знаниями для их устранения под руководством преподавателя.

Оценка "неудовлетворительно" выставляется студенту, обнаружившему пробелы в знаниях основного учебно-программного материала, допустившему принципиальные ошибки в выполнении предусмотренных программой заданий. Как правило, оценка "неудовлетворительно" ставится студентам, которые не могут продолжить обучение или приступить к профессиональной деятельности по окончании вуза без дополнительных занятий по соответствующей дисциплине.